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Abstract 
A particularly efficient flow solver can be obtained by 
combining a recent mixed multiscale finite-element method 
for computing pressure and velocity fields with a streamline 
method for computing fluid transport. This multiscale-
streamline method has shown to be a promising approach for 
fast flow simulations on high-resolution geologic models with 
multimillion grid cells. The multiscale method solves the 
pressure equation on a coarse grid while preserving important 
fine-scale details. Fine-scale heterogeneity is accounted for 
through a set of generalized, heterogeneous basis functions 
that are computed numerically by solving local flow problems. 
When included in the coarse-grid equations, the basis 
functions ensure that the global equations are consistent with 
the local properties of the underlying differential operators. 
The multiscale method offers a substantial gain in computation 
speed, without significant loss of accuracy, when the 
multiscale basis functions are updated infrequently throughout 
a dynamics simulation.  

In this paper we propose to combine the multiscale-
streamline method with a recent ‘generalized travel-time 
inversion’ method to derive a fast and robust method for 
history matching high-resolution geologic models. A key point 
in the new method is the use of sensitivities that are calculated 
analytically along streamlines with little computational 
overhead.  The sensitivities are used in the travel-time 
inversion formulation to give a robust quasilinear method that 
typically converges in a few iterations and generally avoids 
much of the subjective judgments and time-consuming trial-
and-errors in manual history matching.  Moreover, the 
sensitivities are used to control a procedure for adaptive 
updating of the basis functions only in areas with relatively 
large sensitivity to the production response. The sensitivity-
based adaptive approach allows us to selectively update only a 

fraction of the total number of basis functions, which gives a 
substantial savings in computation time for the forward flow 
simulations.  

We demonstrate the power and utility of our approach 
using a simple 2D model and a highly detailed 3D geomodel. 
The 3D simulation model consists of more than one million 
cells with 69 producing wells. Using our proposed approach, 
history matching over a period of 7 years is accomplished in 
less than twenty minutes on an ordinary workstation PC. 
 
Introduction 
It is well known that geomodels derived from static data only 
– such as geological, seismic, well-log and core data – often 
fail to reproduce the production history. Reconciling 
geomodels to the dynamic response of the reservoir is critical 
for building reliable reservoir models. In the past few years, 
there have been significant developments in the area of 
dynamic data integration through the use of inverse 
modeling.1-12 Streamline methods have shown great promise in 
this regard.7-12 Streamline-based methods have the advantages 
that they are highly efficient “forward” simulators and allow 
sensitivities of production responses with respect to reservoir 
parameters to be computed analytically using a single flow 
simulation.7-10 Sensitivities describe the change in production 
responses due to small perturbations in reservoir properties 
such as porosity and permeability and are a vital part of many 
dynamic data-integration processes. 

Our recent works on streamline-based integration of 
production data were based on so-called ‘generalized travel 
time inversion’.7,8 There are several advantages associated 
with travel-time inversion of production data. First, it is robust 
and computationally efficient. Unlike conventional 
‘amplitude’ matching, which can be highly non-linear, it has 
been shown that the travel-time inversion has quasilinear 
properties.7,13 As a result; the minimization proceeds rapidly 
even if the initial model is not close to the solution. Second, 
the travel time sensitivities are typically more uniform 
between wells compared to ‘amplitude’ sensitivities that tend 
to be localized near the wells. This prevents over-correction in 
the near-well regions.13 Finally, in practical field applications, 
the production data are often characterized by multiple peaks 
(for example, tracer responses). Under such conditions, the 
travel-time inversion can prevent the solution from converging 
to secondary peaks in the production response.7 
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Even though streamline simulation provides fast forward 
simulation compared with a full finite-difference simulation in 
3D, the forward simulation is still the most time-consuming 
part of the history-matching process. A streamline simulation 
consists of two steps that are repeated: (i) solution of a 3D 
pressure equation to compute flow velocities; and (ii) solution 
of 1D transport equations for evolving fluid compositions 
along representative sets of streamlines, followed by a 
mapping back to the underlying pressure grid. The first step is 
referred to as the pressure step or the pressure solve and is 
often the most time-consuming. Consequently, history 
matching and flow simulation are usually performed on 
upscaled reservoir-simulation models.14 However, 
upscaling/downscaling may result in loss of important fine-
scale information. Recently, several multiscale methods for 
solving the pressure equation have proven to be a promising 
alternative to standard upscaling, both with respect to accuracy 
and efficiency.15-18 These multiscale methods are specially 
designed to perform well when the underlying parameters 
exhibit a multiscale structure; that is, when the parameter 
values span several orders of magnitude or the correlation 
lengths of the heterogeneity structures vary over several 
orders. Like standard upscaling methods, the multiscale 
methods compute coarse-scale pressure velocities by solving a 
reduced set of global flow equations on a coarsened grid. 
These coarse-scale equations are defined in terms of the 
solutions of a set of local, decoupled flow problems. However, 
unlike upscaling methods, which only preserve the local flow 
in an averaged sense, multiscale methods try to preserve the 
subscale variations of the flow by finding approximate 
solutions that contain the most relevant fine-scale information. 
As a result, multiscale methods give pressure and/or flow 
velocities on both the coarse grid and on the original fine grid. 

Multiscale methods are primarily targeted at dynamic flow 
simulations, where the pressure needs to be computed 
repeatedly. Since the temporal changes in the variable 
coefficients in the pressure equation are typically moderate 
compared to the spatial variability, it is seldom necessary to 
recompute the local flow problems each time the pressure is 
updated. Each local flow problem is computed initially as part 
of a preprocessing step (that is embarrassingly simple to 
parallelize) and typically only updated if the local domain is 
swept by a strong front in the fluid compositions or the global 
flow pattern changes significantly due to shut-in of wells, infill 
drilling, well conversion, etc. Hence, a pressure update 
typically consists of recomputing a few local flow problems 
and then solving a global flow problem on the coarse grid. 
This means that one can obtain an approximate solution on the 
original grid at the cost of solving the same problem on a 
much coarser grid. 

In this paper, we combine multiscale-streamline simulation 
and streamline-based history matching in one efficient 
approach. For the pressure equation in the forward model we 
will apply a method we refer to as ‘the mixed multiscale 
finite-element method’ (MsMFEM).19,20 The method uses a 
two-grid approach consisting of a fine grid, on which the 
geomodel is given, and a coarse grid, on which the global flow 
problem is solved. The blocks in the coarse grid are given as 
connected collections of cells from the fine grid. For each pair 
of adjacent blocks in the coarse grid, a local flow problem is 

solved on the underlying fine grid to obtain basis functions 
that are incorporated into a global system of equations 
associated with the coarse grid. MsMFEM produces mass-
conservative solutions both on the coarse grid and on the 
underlying fine grid, is flexible with respect to grid 
representation (geometry/topology), and has a rigorous 
mathematical framework.  

For the history matching we use the generalized travel-
time inversion method, which has previously been 
successfully applied to many field cases. Central in this 
method is the computation of analytic streamline sensitivities 
in terms of simple 1-D integrals along streamlines. The 
sensitivities can be computed using a single streamline 
simulation. The second novel idea in this paper is a strategy 
based on sensitivity thresholding for reducing the workload for 
the forward simulation and for the inversion process. 
Altogether, the analytic sensitivities are used for three 
purposes: (i) in the inversion method, (ii) to reduce the 
computational complexity of the forward simulations by 
reducing the number of local flow solves, and (iii) to reduce 
computational complexity of the inversion process. 

The outline of our paper is as follows. First, we discuss the 
basic steps in our proposed approach and illustrate the history-
matching procedure using a simple synthetic example. Second, 
we describe the multiscale-streamline flow simulation and the 
history-matching procedure. Third, we discuss and 
demonstrate the impact of selective sensitivity-based workload 
reduction. Finally, we present a high-resolution history-
matching example to demonstrate the efficiency and the 
practical applicability of our method. 

 
Background and Illustration of the Procedure 
Streamline-based history matching or inverse modeling 
utilizes streamline-derived sensitivities to calibrate geomodels 
to dynamic data. The major steps involved in the proposed 
process are: (i) Multiscale-streamline flow simulation to 
compute production responses at the wells. (ii) Quantification 
of the mismatch between observed and computed production 
responses via a generalized travel time. An optimal ‘travel-
time shift’ is computed by systematically shifting the 
computed production responses towards the observed data 
until the cross-correlation between the two is maximized.8 (iii) 
Computation of streamline-based analytic sensitivities of the 
production responses (water-cuts) to reservoir parameters, 
specifically permeability. (iv) Updating of reservoir properties 
to match the production history via inverse modeling. We 
propose a sensitivity-based thresholding strategy to reduce the 
computational work for this step.  

This four-step process is repeated until a satisfactory match 
in production data is obtained. To reduce the computational 
workload for the forward simulation, we propose to reuse 
basis functions in regions with low sensitivity to the 
production responses. 

In the next sections we will discuss the details of the 
mathematical formulation behind the multiscale mixed finite-
element formulation and the inversion method, and propose a 
sensitivity-based strategy for selective work reduction. 
However, for clarity of exposition, we first illustrate the 
history matching procedure using a 2-D synthetic example. 
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A Synthetic Example. This synthetic case (Case 1) involves 
reconstruction of a reference permeability distribution on a 
uniform 21×21 grid (Fig. 1), based on the observed water-cut 
production history from a 9-spot pattern (Fig. 2). For the 
forward simulation we apply the MsMFEM-streamline 
simulator (to be described below), with the 21×21 grid as the 
underlying fine grid. We construct a uniform coarse grid of 
dimension 7×7 so that each coarse-grid block consists of 3×3 
subcells. Figure 3 illustrates the two-grid approach for a 
slightly more general case with nonmatching blocks in the 
coarse grid. The multiscale simulator basically works as 
follows: For each pair of adjacent blocks in the coarse grid, a 
local flow problem is solved to obtain a local (multiscale) 
basis function associated with the corresponding internal face 
in the coarse grid (see Fig. 4). The local basis functions are 
then incorporated into a global system of equations defined on 
the coarse grid, which is solved to obtain coarse-grid fluxes. 
Fine-scale flow velocities are then obtained by multiplying the 
coarse-grid fluxes with the corresponding multiscale basis 
function and summing over all edges in the coarse grid.  

The flow was described using quadratic relative 
permeability curves with an end-point mobility ratio of M=0.5. 
The water-cut responses obtained from a flow simulation of 
the reference permeability field are shown in Fig. 2 (with 5% 
white noise added). We treat these as the observed data. Next, 
starting from a homogenous initial permeability field, we 
match the water-cut data via the generalized travel-time 
inversion. The permeability for each fine-grid cell is treated as 
an adjustable parameter for this example (a total of 441 
parameters). A comparison of the initial and final match of the 
water-cuts is shown in Fig. 2. Overall, the match to the 
production data is quite satisfactory. Figure 5 shows the 
reduction in time-shift and amplitude residual. The final 
permeability distribution is shown in Fig. 1. Clearly, the final 
permeability model captures the large-scale trends of the 
reference permeability field. 

 
Mathematical Formulation 
Multiscale Flow Simulation. An important aspect of the 
proposed history-matching algorithm is the use of a multiscale 
mixed finite-element method (MsMFEM) for the pressure 
equation. This method belongs to a family of multiscale finite-
element methods, first introduced by Hou and Wu.  The basic 
idea of the methods is to construct special finite-element basis 
functions that are adaptive to the local properties of the elliptic 
differential operator. To ensure local mass conservation on the 
coarse and fine grid, Chen and Hou introduced a multiscale 
method based on a mixed finite-element discretization.  The 
method was later modified by Aarnes to ensure local mass 
conservation also for blocks containing source terms.  In the 
current paper, we use a slightly different formulation due to 
Aarnes and Lie.

21
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Governing Equations. We consider incompressible two-
phase flow of oil and water in a non-deformable permeable 
medium. For simplicity, we neglect the effects of gravity, 
compressibility and capillary forces. Further, we also assume 
for simplicity no-flow boundary conditions for the reservoir. 
The flow equations can be formulated as an elliptic equation 
for the pressure p and the total velocity v, 

., qvpkv t =⋅∇∇−= λ .......................…………..…………....... (1) 

Here q is a source term representing injection and production 
wells, k is the absolute permeability, and λt= λt(Sw) is the total 
mobility. We will solve Eq. 1 for the fine-scale velocity field v 
using MsMFEM, for which the details will be described in the 
next subsections. 

The velocity field is used to obtain a streamline 
distribution. Along each streamline the 3D transport equation 
reduces to a 1D transport equation with the time-of-flight as 
the spatial coordinate 
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This equation is solved forward in time along each streamline 
using front tracking.23,24 Here the main advantage of this 
method is that it is unconditionally stable and therefore avoids 
the usual CFL-constraint that would have put a severe 
limitation on the time-step size (i.e., enforce the time step to 
be smaller than what is preferred with respect to accuracy).    

Mixed Finite Elements. The mixed finite-element 
formulation of the flow equation (Eq. 1) in a domain Ω seeks 
a pair (v,p) in U×V, such that 
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Here U and V are (finite-dimensional) function spaces for 
pressure and velocity, respectively. Now, letting {Ψi} and 
{Φk} be bases for U and V, respectively, we obtain 
approximations v=ΣviΨi and p=ΣpkΦk, where the coefficients 
v= {vi} and p= {pk} solve a linear system of the form 
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where B={bij}, C={cij} and q={qk} are defined by 

∫
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Multiscale Basis Functions. In a standard discretization, 
the spaces U and V typically consist of low-order piecewise 
polynomials. In multiscale methods, U and V are given by the 
solution of local flow problems. For incompressible flows, the 
actual pressure solution is immaterial for the flow simulation, 
and so only the velocity field is needed. We will therefore only 
construct an accurate multiscale approximation space U  for 
the velocity and use a standard approximation space V for 
pressure consisting of piecewise constant functions. 

ms

Let {Km} be a partitioning of Ω into mutually disjoint 
(fine) grid cells. Furthermore, let {Ti} be a coarse partitioning 
of Ω, in such a way that whenever Km∩Ti≠0, then Km⊂Ti (see 



4  SPE 106228 

Fig. 3). Let Γij denote the non-degenerate interfaces 
Γij=∂Ti∩∂Tj. For each Γij, we assign a basis function Ψij in 
Ums, and for each Ti we assign a basis function Φi in V. The 
basis function Ψij is obtained by forcing a unit flow from block 
Ti to Tj; that is, by solving a local flow problem in Ωij=Ti∪Tj  
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with Ψ·n=0 on the boundary of Ωij. To give a unit flow from Ti 
to Tj, the source terms wi(x) are normalized 
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To ensure a conservative approximation of v on the fine grid, 
we choose Wi=q for coarse blocks containing a well.20 For 
coarse blocks where q=0, we scale Wi according to the trace of 
the permeability tensor25; i.e., we use 
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The local flow problems in Eq. 9 can be solved numerically 
by any consistent and conservative method; here we use the 
standard two-point flux-approximation scheme. The 
corresponding basis functions can be seen as generalizations 
of the lowest-order Raviart-Thomas basis functions in a 
standard mixed method.26 Figure 4 illustrates the x-velocity 
basis functions in two different cases. This completes the 
definition of MsMFEM.  

Implementation of the MsMFEM. We will briefly 
describe some implementation aspects related to the efficiency 
and generality of MsMFEM. The mixed formulation leads to 
an indefinite global system (Eq. 5), which may be more 
difficult to solve efficiently than the symmetric positive-
definite (SPD) systems that typically arise from standard 
discretization methods. However, by reformulating Eq. 3 and 
Eq. 4 to an equivalent, so-called hybrid, formulation, it is 
possible to obtain an SPD system also for MsMFEM.  Like the 
indefinite system in Eq. 5, the hybrid system will be sparse 
because the basis functions have local support, and the 
solution can be obtained using one of the efficient linear 
solvers specialized for sparse SPD systems. The hybrid 
formulation is described in more detail by Aarnes et al.  We 
note that in our current implementation, we solve the global 
system in Eq. 5 using a direct sparse solver, since we only 
deal with moderately sized coarse systems. 

27

Most of the computational work in MsMFEM is associated 
with solving the local flow problems defined by Eqs. 9 to 11, 
and the choice of solution strategy for these equations is 
crucial to the overall performance of the method. The local 
problems are usually small to moderately sized, and the 
resulting systems can be solved using sparse direct or sparse 
iterative linear solvers. The optimal choice of linear solver 
typically depends on the problem size, and we recommend 
having available a range of solvers tuned to different system 
sizes. Alternatively, if one has access to a highly efficient 
solver for large sparse systems, it may be beneficial to lump 
together several local problems to form a larger system. 

Solving larger systems may be advantageous because the most 
efficient linear solvers typically require an initial setup phase. 
Regardless choice of solution strategy, efficient parallelization 
is easy, since the local flow problems are completely 
decoupled. 

In the examples presented in this paper, we only use 
Cartesian grids. However, MsMFEM is flexible with respect 
to the choice of both fine and coarse grids. Given a fine-grid 
solver, basis functions can be defined for almost any collection 
of connected fine-grid cells.25 Recently, the method has been 
implemented for (matching) corner-point and tetrahedral grids 
in 3D27, and based on this experience we are confident that the 
methodology presented in the current paper is easily extended 
to corner-point grid models. 

 
Production-Data Integration. In our approach, integration of 
production data is carried out using a ‘generalized travel-time 
inversion’ as described by He et al.8 First, the production-data 
mismatch is determined by computing a ‘generalized travel-
time misfit’ for the water-cut at each producing well. This is 
accomplished by shifting the computed water-cuts towards the 
observed data until the correlation between the two is 
maximized. The inversion algorithm simultaneously 
minimizes the travel-time misfit for all the wells using an 
iterative least-square minimization algorithm (LSQR).7,8 The 
basic underlying principles behind the history-matching 
algorithm are briefly as follows: 

• Match the field-production history within a specified 
tolerance. This is accomplished by minimizing the 
travel-time misfit for water-cut. 

• Preserve geological realism by keeping changes to 
the prior geological model minimal, if possible. The 
prior model already incorporates static data (well and 
seismic data) and available geological information. 

• Only allow for smooth and large-scale changes; the 
production data has low resolution and cannot be 
used to infer small-scale variations in reservoir 
properties. 

 
Formulation of Inverse Problem. Mathematically, this 

algorithm leads to the minimization of a penalized misfit 
function consisting of the following three terms7,8: 

mLmmStΔ δβδβδ 21
~ ++− ……………...………..(12) 

Here tΔ~ is the vector of generalized travel-time shifts at the 
wells, S is the sensitivity matrix containing the sensitivities of 
the generalized travel time with respect to the reservoir 
parameters, mδ corresponds to the changes in the reservoir 
properties, and L is a second-order spatial difference operator. 
The first term ensures that the difference between the observed 
and calculated production response is minimized. The two 
remaining terms are standard regularization terms. The second 
term is a norm constraint that penalizes deviations from the 
initial (prior) geological model and as such helps to preserve 
the geological realism in the history match. The third term, 
which is a ‘roughness’ constraint that measures the regularity 
of the changes, is introduced to stabilize the inversion. 
Physically, it only allows for large-scale changes that are 
consistent with the low resolution of the production data. The 
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weights β1 and β2 determine the relative strengths of the prior 
model and the roughness term.  

The minimum in Eq. 12 can be obtained by an iterative 
least-squares solution to the augmented linear system 
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This system is solved with the iterative least-square 
minimization algorithm, LSQR,28 for which the computational 
cost scales linearly with respect to the number of degrees-of-
freedom.29 Fine-grid sensitivities close to zero are eliminated, 
which makes the system more sparse and reduces the number 
of arithmetic operations for the LSQR-iterations. In the next 
section we will discuss an approach to further reduce the 
number of non-zero sensitivities based on thresholding of 
coarse-grid sensitivities. 

In our implementations we focus on inverting water-cut 
data. However, the generalized travel-time inversion method 
has earlier been extended to compressible three-phase flow, so 
that water-cut and gas-oil-ratios are incorporated jointly.10 

 
Water-Cut Sensitivities. A unique feature of streamline 

methods is that the parameter sensitivities can be computed 
using a single flow simulation, leading to very fast history-
matching or inverse-modeling algorithms. Moreover, because 
the sensitivities are simple integrals along streamlines, the 
computation time scales very favorable with respect to the 
number of grid cells, thus making streamlines the preferred 
approach for history matching highly-detailed geological 
models.  

For the sake of completeness, we finally briefly describe 
the streamline-based sensitivity calculations. The velocity of 
propagation for a given saturation contour S  along a 
streamline will be given by,

w
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and the arrival time of the saturation front will be, 
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We use the above relationship to compute the sensitivity of the 
arrival time of the saturation front based on the sensitivity of 
the time-of-flight.7,8 Specifically, the sensitivity of the arrival 
time of the saturation front with respect to reservoir parameter 
m is computed as, 

 a
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Here the sensitivity of the time-of-flight is computed 
analytically from a single streamline simulation under the 
assumption that the streamlines do not shift because of small 
perturbations in reservoir properties. For example, the time-of-
flight sensitivity with respect to permeability in grid cell i, 

under the assumption of the same permeability for the whole 
grid cell, will be given by7
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where the integral is along the streamline trajectory Σ and s(x) 
is the ‘slowness’ defined as the reciprocal of the total 
interstitial velocity 

.
)(

)(
)(
)()(

Pxk
x

xv
xxs

∇
==

φμφ ………………………………………(18) 

Similarly, the time-of-flight sensitivities can be calculated 
with respect to mobility or to the product of mobility and 
permeability. 

Finally, the sensitivity of the shift in the generalized travel 
time  with respect to reservoir parameters is given by tΔ~

,
1

~ 1
∑
= ∂

∂
−=

∂

Δ∂ dN

d a m
at

m

t

N
…………………………………………. (19) 

where Nd represents the number of observed data for a well.  
Finally, we remark that the streamline-based sensitivity 

computation has been extended to include gravity, changing 
field conditions, and fractured reservoirs.8,9

 
Sensitivity-Based Selective Work Reduction
In this section, we discuss how the sensitivities introduced 
above can be used to reduce the computational complexity of 
the history matching with negligible loss in quality of the 
derived match. To this end, we use sensitivities to determine 
when to update and when to not update basis functions. 
Similarly, we will reduce the inverse system by only including 
the sensitivities of fine-grid cells within coarse blocks having 
a sufficiently high average sensitivity. These two strategies 
will be described in more detail below.   

 
Selective Updating of Basis Functions. To reduce the 
computational work for MsMFEM, we propose to only update 
basis functions in areas with great production-response 
sensitivities. The inversion method provides sensitivities 
associated with the fine grid. To associate a sensitivity 
coefficient with each basis function, we compute the 
arithmetic average of fine-grid sensitivities over the domain 
where the basis function has support. To determine which 
basis functions to update, one can either: (i) use a predefined 
threshold for the sensitivity values, or (ii) update a predefined 
fraction of the basis functions. The first approach is fully 
adaptive in the sense that the number of updated basis 
functions may change from iteration to iteration. However, 
this approach requires (general) guidelines for setting the 
threshold, which may be easier to obtain by making the 
sensitivities dimensionless. The second approach requires 
sorting of the sensitivities. The number of basis functions is 
equal to the number of edges/faces, which scales with the 
number of coarse-grid blocks, and sorting them is therefore a 
minor concern, since the number of operations for sorting N 
numbers scales like N·logN. For our implementations we will 
stick to the second approach. 

By inspecting Eq. 9, we notice that there are three factors 
that may require the basis functions to be updated before a 
new pressure solve. First of all, we notice that if the absolute 
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permeability k changes, the basis functions will change, too. In 
the current application, the absolute permeability will typically 
change (in certain regions) from one forward simulation to the 
next. Secondly, if the well rate q changes, the source term 
w (x) will change and hence basis functions with support in 
well-blocks will change. Finally, if the total mobility λ  
changes, due to changes in saturation (or viscosities), the basis 
functions will change.  

i

t

In the first flow simulation of the history-matching 
procedure, we update all basis functions in every pressure 
step, because no sensitivities are yet available. (In a more 
sophisticated implementation, one would typically have used 
another kind of indicator to ensure that basis functions are 
only updated near the saturation front20,16 ).  After the first 
simulation, the permeability field is updated by the inversion 
method. Since the permeability field has changed, we should, 
at least in principle, recalculate all basis functions for the first 
pressure step of the next flow simulation. For the subsequent 
pressure steps of the simulation, we apply the proposed 
selective updating strategy. For the subsequent simulations we 
repeat the strategy of the second simulation. The approach 
described in this paragraph, when x% of the basis functions 
are updated dynamically each time step, is referred to as x% 
BF-DU (basis functions – dynamical update). Finally, we 
remark that for 0% BF-DU we will not update basis functions 
during the first flow simulation because no sensitivities are 
then required. This special case deviates from what we 
specified above. 

An extended approach would be to reuse basis functions 
from the previous forward simulation in the coarse blocks 
where the absolute permeability has undergone small or no 
changes in the last inversion step. We suggest to use averaged 
production-response sensitivities to pick coarse blocks with 
small changes (or generally coarse blocks that have little effect 
on the overall production characteristics). Alternatively, one 
could use some kind of norm criteria to determine changes to 
the absolute permeability. We will refer to this strategy, where 
x% of the basis functions are updated initially and the 
remaining (100-x)% are kept from the previous flow 
simulation, as x% BF-IU (basis functions – initial update). 

In the following, we will only use one of these two 
techniques at a time, although they may in principle be 
combined. 
 
Selective Reduction of the Inversion System. Since the 
water-cut data contain limited information about fine-scale 
variations, it can be advantageous to avoid involving areas of 
low sensitivity in the inversion, and instead focus on resolving 
large-scale structures in areas with higher sensitivities. We 
therefore propose to eliminate fine-scale sensitivities from the 
LSQR-system (Eq. 13) in areas of low sensitivity, which will 
also reduce the computational work in the inversion process. 
To determine the areas of low and high sensitivity, we use a 
similar procedure as for the selective updating of basis 
functions. That is, for each coarse block we compute a 
sensitivity coefficient by arithmetic averaging of the fine-grid 
sensitivities already provided by the inversion method. Then 
we introduce a threshold and only include the fine-scale 
sensitivities associated with cells inside coarse blocks having 
an average sensitivity above the given threshold. The coarse 

blocks that are eliminated in this process will usually mainly 
contain cells with zero or low sensitivity. 

The constraints involved in Eq. 12 are important for the 
elimination of coarse blocks to work. As for the thresholding 
of basis functions, we can either use a predefined threshold for 
the sensitivity values or a predefined fraction of coarse blocks; 
here we use the second approach. Henceforth, keeping y% of 
the coarse blocks is referred to as y% CB. It should be noted 
that eliminating fine cells for a fraction of the coarse blocks 
having low sensitivity will not necessarily decrease the 
number of fine-grid sensitivities in the inverse system by the 
same fraction. The reason is cells with zero or small sensitivity 
are already eliminated, and such fine-grid sensitivities are 
more likely represented in coarse blocks with low sensitivity. 
 
Impact of Selective Work Reduction 
To investigate the accuracy of the proposed selective work 
reduction, we apply it to the synthetic 9-spot case presented 
earlier in this paper (Case 1). We will still refer to this case as 
Case 1 even though we will vary some parameters and 
strategies for selective work reduction. 

First, we investigate the effect of the proposed strategy for 
selective dynamical updating of basis functions (BF-DU) for 
the forward simulation. To this end, we compare results 
obtained by updating 100%, 75%, 50%, and 25% of the basis 
functions, selected according to the associated coarse-grid 
sensitivity coefficients. (Here all basis functions are 
recomputed in the first step of each new forward simulation). 
Table 1 shows the corresponding reductions for misfit in time-
shift and amplitude after six iterations for an unfavorable 
mobility ratio (M=10) and two favorable mobility ratios 
(M=0.2 and M=0.5). In addition, the table reports the average 
discrepancy between the reference and derived permeability 
field measured by 

∑ −= |)log()log(|1
1

derived
i

reference
i

N
i kk

N
.…..…….…… (20) 

Reductions in misfit for each iteration in the history-matching 
algorithm are shown in Figs. 6 and 7 for M=10 and M=0.2, 
respectively. Similarly, some of the derived permeability 
fields from the history matches are shown in Figs. 8 and 9. In 
general, the data are well matched for all reduction strategies. 
However, since the inversion problem is ill-posed, a unique 
solution cannot be expected. Indeed the permeability fields 
obtained for the cases with unfavorable and favorable mobility 
ratios differ even when updating all basis functions.  

Judging from Fig. 8, the derived permeability fields for the 
unfavorable mobility ratio do not seem to change much when 
reducing the number of dynamically updated basis functions. 
Following Aarnes20, one can argue that it is in general quite 
safe to reduce the number of dynamically updated basis 
functions for unfavorable flow cases, since these are 
characterized by weak shocks and mostly smooth variations in 
the total mobility. For the favorable mobility ratio (M=0.2), 
the derived permeability fields seem to change more by 
reducing the fraction of basis functions updated. In this case, 
the flow will generally have strong saturation fronts, which 
induce major changes in the basis functions as the leading 
water fronts move through the corresponding grid blocks. 
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To further reduce the number of basis function 
computations we will try to apply the extended approach, in 
which we reuse basis functions from the previous forward 
simulation, for M=0.2, M=0.5 and M=10. We go directly to the 
extreme of keeping the basis functions from the first time step 
of the first flow simulations throughout the history-matching 
procedure. In other words, no updating of basis functions at 
all; that is 0% BF-DU and 0% BF-IU. The corresponding 
results are reported in Table 1, and Fig. 10 shows the resulting 
permeability fields for mobility ratios M=0.2 and M=10. The 
quality of the history-matching procedure does not seem to 
decline dramatically by not updating basis functions at all for 
this case. 

Finally, we investigate the effect of the proposed strategy 
for selective reduction of the inverse system.  To this end, we 
consider the case with mobility ratios M=0.2, M=0.5 and 
M=10, and keep the fine-grid sensitivities corresponding to 
100%, 75%, and 50% of the coarse-grid blocks, selected by 
thresholding the averaged sensitivities in the coarse grid. 
Keeping 100% for M=0.5 corresponds to the history matching 
performed for the 9-spot case initially in this paper. All the 
fractions matched the data well (see Table 1 and Fig. 11). The 
derived permeability fields for M=0.5 for the three strategies 
100% CB, 75% CB, and 50% CB are shown in Figs. 1, 12a, 
and 12b, respectively. The derived permeability fields do not 
change much when reducing the coarse-block fraction to 50%, 
but going down to 25% gave a non-realistic permeability field. 
We also note that for some cases, the selective reduction of the 
inverse system resulted in a slightly slower convergence for 
the inversion. The method converged to the same residual 
level as without selective work reduction, but the inversion 
required one or two additional iterations, thus resulting in 
increased total computation time. Even though the selective 
reduction of the inversion system can result in a slightly 
slower convergence, our experiments demonstrate robustness 
for the generalized travel-time inversion.   

Finally we investigate the reduction strategy for the 
forward simulation (not extended approach) and the inversion 
simultaneously for the case with mobility ratios M=0.2, M=0.5 
and M=10. We consider the combination of 50% BF-DU with 
75% and 50% CB. The two cases matched the data well (see 
Table 1 and Fig. 11). Further, the derived permeability fields 
for M=0.5 are shown in Figs. 12c and 12d.  The derived 
permeability fields do not change much by including selective 
updating of basis functions (see Table 1). 

 
History Matching a Full 3D Geomodel  
In this section we demonstrate the feasibility of the approach 
for field studies by application to a high-resolution 3-D 
example (Case 2). As mentioned before, streamlines and the 
time-of-flight are used to compute the sensitivity of the 
production data with respect to reservoir parameters as 
described above. In this field-scale example, water-cuts were 
matched to update the reservoir permeability distribution using 
the MsMFEM-streamline simulator for the forward 
simulation. 
 
Model Description. The geomodel consists of a fine grid with 
256×128×32 cells, which gives a total of 1,048,576 grid cells, 
each of size 10×10×2 m. The fine-grid cells are collected into 

a uniform 32×16×8 coarse grid, so that each coarse block 
consists of 8×8×4 cells in the fine grid. All the cells are treated 
as active. 

The permeability is log-normally distributed with a mean 
of 2.2 mD, a minimum of 0.017 mD and a maximum of 79.5 
mD (see Fig. 13b). The correlation length in the x- and y-
directions is about 270 meters, and about 90 meters in the z-
direction. For our purposes, this permeability field was used as 
a true or reference model to generate production history from 
flow simulation. To generate our reference production data we 
used the standard two-point flux-approximation (TPFA) finite-
volume method directly on the fine grid.  

A total number of 32 injectors and 69 producers were 
included in the simulation model (see Fig. 14). All the wells 
are vertical and intersect all layers. The production history 
consists of 2475 days of water-cut data from the 69 producers 
(Fig. 15). The water injectors were injecting at constant total 
reservoir volume rate of 1609 bbl/day, and each producer was 
producing with constant reservoir volume rate fulfilling the 
total voidage rate. For each simulation, we used 15 pressure 
steps of length 165 days. Further, quadratic relative 
permeability curves and end-point mobility ratio of M=5 were 
used. 
  
Production Data Integration. To generate an initial 
permeability model, we treat the permeability values in the 
well-blocks of the reference model as known data. By 
conditioning on the well data, sequential Gaussian simulation 
was used to generate multiple realizations of the permeability 
model.30

In the following we will mainly consider three approaches: 
MsMFEM [full], MsMFEM [reduced] and TPFA. The two 
first approaches are multiscale approaches, while the last one 
simulates directly on the fine grid. Further, for the first and the 
last approach no selective work reduction occurs. For 
MsMFEM [reduced] the extended approach for reducing the 
number of basis function computations is applied. For each 
new forward simulation, the basis functions are sorted 
according to average sensitivities and for the lowest 50%, 
basis functions are kept from the previous flow simulation. For 
the remaining 50%, the basis functions are updated once 
before the first pressure solve. Moreover, selective reduction 
of the inverse system is used keeping fine-grid sensitivities for 
50% of the coarse blocks. In other words:  

• MsMFEM [full] =  100% DU + 100% IU + 100% CB, 
• MsMFEM [reduced] =  0% DU + 50% IU  + 50% CB. 
Figure 16 and Table 2 show the convergence of the 

inversion algorithm. In six iterations, all misfits in time-shift 
and amplitude for the water-cut dropped appreciably for the 
three approaches. Reference, initial, and matched water-cut 
curves are shown in Fig. 15 for a few selected producers. 
Some of the wells had a quite good match initially, and at the 
end of the history matching all wells had a quite satisfactory 
match.  

Figure 13 compares the initial and the reference 
permeability models with the updated (derived) models. The 
scale is logarithmic and the minimum permeability is 0.017 
mD and the maximum is 112.3 mD. The three approaches 
gave almost identical derived permeability fields. Therefore, 
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just one of the derived permeability fields (for MsMFEM 
[full]) is picked for closer inspections. From a casual look, it is 
hard to discern the changes made to the initial model. This is 
because the inversion algorithm is designed to preserve the 
geologic continuity and the initial geologic features to the 
maximum possible extent. However, a careful comparison 
reveals many differences between the initial and the updated 
geologic models. 

Next, we examine if the changes made to the initial model 
are consistent with the ‘reference’ permeability model. Figure 
17 shows the differences between the updated and initial 
permeability model. These differences represent ‘changes 
made’. This is to be compared with the ‘changes needed’, 
which is the difference between the reference and the initial 
permeability model. We see that there is clearly close 
agreement, particularly in regions where the permeability 
needs to be reduced (negative changes). As might be expected, 
there are also some discrepancies. Many of the wells had a 
good match initially even though the permeability fields differ. 
Because the water-cut data curves are a result of the total flow 
pattern between a producer and one or more injectors, this data 
source may have limited spatial information. Some of the 
changes occur in correct horizontal position, but incorrect 
vertical position. This can occur because the water-cut data 
has no vertical spatial resolution. Finally, it is worth pointing 
out that this inversion problem is highly ill-posed, and 
therefore a variety of possible solutions exist. Table 2 shows 
average discrepancies between the reference and the derived 
permeability fields (see Eq. 20) for TPFA, MsMFEM [full], 
MsMFEM [reduced]. The average discrepancies indicate that 
the history-matching procedure is stable with respect to the 
selective work-reduction strategies. We have also investigated 
some other selective work-reduction strategies, and the results 
with respect to both misfit and average discrepancies turn out 
to be as stable as for Case 1. 

To sum up, the changes made to the permeability field 
preserved the geologic realism, were mostly in accordance 
with the ‘changes needed’ (see Fig. 17), and resulted in 
satisfactory match of the water-cut data. Further, the different 
strategies for selective work-reduction turned out to give 
stable results with respect to ‘changes made’ and misfit (see 
Table 2). 
 
Computational Efficiency. Finally, we will assess the 
efficiency of our multiscale method compared to a standard 
streamline method using a TPFA pressure solver.  To this end, 
we consider two different computers running Linux: PC 1 is a 
laptop PC with a 1.7 GHz Intel Dothan Pentium M processor, 
2Mb cache and 1.5 Gb memory, PC 2 is a workstation with a 
2.4 GHz Intel Core 2 Duo, 4Mb cache, and 3 Gb memory. 

Table 2 reports simulation times observed on the two 
computers. Here the total simulation time includes time for 
inversion, IO, and seven forward simulations, each with 
fifteen pressure steps. Similarly, we report the total time for 
the pressure solves and the transport solves (including 
mappings and tracing of streamlines). 

When all basis functions are updated in all steps, the 
multiscale solver is, as expected, about 25% slower than 
TPFA with an optimal algebraic multigrid (AMG) solver on 
the laptop (PC1). On the other hand, the memory requirements 

for MsMFEM are quite low and this solver could easily have 
been run on larger models, as opposed to the TPFA methods, 
for which the AMG solver almost exceeded the available 
memory.  Moreover, on highly skewed, non-Cartesian grids 
(e.g., corner-point grids), MsMFEM uses a much better spatial 
discretization27 and will therefore give more accurate 
predictions of flow. 

The comparison of TPFA and MsMFEM [full] is not very 
interesting on the workstation (PC2). Due to an immature 
compiler for the particular hardware, we were not able to 
optimize the direct solver used to compute basis functions, 
while the AMG solver could be (almost) fully optimized by 
using a vendor-specific compiler. The runtimes for the 
pressure solves (and the total runtime) on PC2 are therefore 
somewhat higher than expected, and will probably improve 
significantly when a more mature compiler becomes available 
in a few months.  

By MsMFEM [reduced], we were able to reduce time for 
pressure solves by about 80% on both computers. In 
MsMFEM [reduced] the basis functions to be reused were 
read from file. Slow disc access on the laptop therefore 
prevented a further reduction in runtime. The workstation, on 
the other hand, had a faster disc, but further reductions in 
runtime were prevented by the unoptimized linear solver (as 
discussed above).  

Reduction of the inverse system was expected to have a 
very small effect on the runtime, since a fully optimized 
compilation on a GHz processor gives a floating-point 
performance that would make the reduced number of 
arithmetic operations insignificant compared to other kinds of 
operations, which indeed is consistent with what we observe in 
Table 2. However, the results from the reduction of the 
inverse system indicate robustness for the generalized travel-
time inversion method. 

Finally, to speed the method further up, and to make our 
simulations comparable to state-of-the-art commercial 
streamline solvers, we apply a method for improved mass 
conservation for streamline simulation proposed by Kippe et 
al.31  Using this method,  the total number streamlines could be 
reduced from 500 000 to 50 000, thereby reducing the time for 
the transport solves by 80%. Altogether, this meant that the 
full history match could be performed in an impressive 
runtime of 17 minutes on the workstation (PC2) and 36 
minutes on the laptop (PC1)!  

For the workstation there is an obvious potential for further 
improvements by using a better compiler. Moreover, on Core 
2 Duo processors one should also exploit the natural 
parallelism in updating basis functions and in the streamline 
computations.  
 
 
 
Summary and Conclusions 
A novel approach to history matching using multiscale-
streamline simulation and analytic sensitivities is presented. 
The power and utility of our proposed approach is 
demonstrated using both a synthetic and a field-scale example. 
The synthetic case includes matching of water cut from a 9-
spot pattern and is used to validate the method. The field-scale 
example consists of more than a million grid cells. Starting 
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with a prior geomodel, production data were integrated using a 
generalized travel time inversion. The entire history matching 
process took less than 40 minutes using a laptop PC and about 
17 minutes using an ordinary workstation PC. The 
permeability changes were found to be reasonable and 
geologically realistic. 

Some specific conclusions from this paper can be summarized 
as follows. 

1. A multiscale-streamline flow simulator was used for 
history matching by generalized travel-time 
inversion.   

2. By utilizing the production-response sensitivities 
provided by the generalized travel-time inversion, we 
were able to reduce the total workload for the 
multiscale simulator considerably and still preserve 
the accuracy of the flow simulation. 

3. By utilizing the production-response sensitivities, we 
were able to selectively reduce the number of non-
zero sensitivities in the inverse system considerably 
without reducing the accuracy of the production data 
integration. This demonstrates robustness for the 
generalized travel-time inversion. 

4. The approach proved applicable and efficient for a 
high-resolution reservoir model.  
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Nomenclature 
v = velocity 
p = pressure  
l,u = test functions 
V,U = function spaces 
K = fine grid cells/elements 
T = coarse grid blocks/elements 
Ω = domain 
Γ = coarse block interface 
n = unit normal vector 
Ψ = basis function velocity 
Φ = basis function pressure 
q = total rate (source/sink) 
fw= fractional flow function (water) 
Sw = saturation of water 
k = absolute permeability 
λt = total mobility 
M = end-point mobility ratio 
m = reservoir parameter 
Nd= number of data points 
N = number of grid cells 
Subscripts 
ms = multiscale 
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Table 1 – Case 1: Reduction in percent for misfit in time-shift (T) and amplitude (A), and reduction in average discrepancy in log permeability 

(Δlog(k)). The results are presented for different strategies for selective work reduction and different mobility ratios M. The first row shows 
the results for the initial permeability field. 

M=0.2 M=0.5 M=10                          Method 
      T              A               Δlog(k)      T                A             Δlog(k)    DU              IU               CB        T              A                 Δlog(k) 

Initial 100.0 100.0          1.045  100.0   100.0         1.045 100.0 100.0            1.045 
   100%      100%      100%     6.0   13.5           0.583      5.7     13.4         0.574     6.1 23.0            0.530 
    75%     100%     100%     4.6    12.7           0.607      5.1     13.5         0.587     7.7 23.5             0.525 
    50%     100%     100%      3.3    12.6           0.658      5.5     13.6         0.611     6.5 23.7             0.529 
    25%     100%     100%      5.9    16.9           0.697      2.6     15.9         0.629     8.0 24.0             0.534 

    100%      100%        75%      5.6       13.2          0.592      4.9     13.0         0.586     7.2 23.0             0.537 
    100%      100%        50%      5.5       12.8     0.587      5.2     13.3         0.557     6.2 23.2             0.540 
      50%      100%        75%      3.1       12.4     0.577      3.8     13.3         0.631     6.0 23.6             0.541 
      50%      100%        50%     4.3       14.2     0.675      2.3     12.8         0.627     7.9 24.7             0.540 
        0%*          0%      100%     5.8       18.1     0.728      2.1     17.1         0.622      8.7 24.0             0.538 
*Does not update basis functions during the first flow simulation 
 
 
Table 2 – Case 2: Reduction in percent for misfit in time-shift (T) and amplitude (A). Reduction in average discrepancy in log permeability 

(Δlog(k)).  The total simulation time for the history-matching procedure for our implementations on two different computers: a 1.7GHz 
laptop (PC 1), and a 2.4GHz workstation (PC 2). The CPU-time for the two computers spent on the pressure (velocity) solutions and the 
transport solutions. The first row shows the results for the initial geomodel. 

Total CPU-time:  T 
 

A Δlog(k) Total simulation 
time (Wall clock) 

   PC1             PC2 
               Pressure 
       PC1                PC2 

            Transport 
       PC1              PC2 

Initial  100.0  100.0 0.821     - - - - - - 
 TPFA     8.9    53.5 0.806  2h 12min 1h 04min      1h 02min      33min      54min 28min 
 MsMFEM [full]   10.3   53.1 0.796  2h 42min 2h 29min    1h 17min 1h 54min 1h 06min 32min 
MsMFEM [reduced]     7.8   53.7 0.823   1h 34min       43min           9min       7min 1h 07min 32min 
 MsMFEM [reduced - SL]     7.6   48.7 0.808           36min        17min           9min        7min      12min  6min 



 
Fig. 1 –  Case 1: Reference and final permeability fields (left and 

right, respectively) for mobility ratio M=0.5. 
 

 

 

 

 
 
Fig. 2 - Case 1:  water-cut match. 
 
 
 

 
Fig. 3 -  A general coarse grid overlying a uniform fine grid with 

the gray area giving support of basis function Ψij, which is 
associated with the edge/face indicated by the red line. 

 
 
 

Fig. 4 -- The x-component of the velocity basis function 
associated with an edge/face between two blocks of different size 
for a homogeneous and a heterogeneous permeability field, 
respectively. 
 

 
Fig. 5 – Case 1: Reduction of misfit in time-shift and amplitude of 

the water-cut. Mobility ratio M=0.5. 
 
 

 
Fig. 6 – Case 1: Reduction of misfit in time-shift and amplitude of 

the water-cut using selective updating of basis functions. 
Mobility ratio M=10. 

 

 
Fig. 7 – Case 1: Reduction of misfit in time-shift and amplitude of 

the water-cut using selective updating of basis functions. 
Mobility ratio M=0.2. 

 
Fig. 8 – Case 1: Derived permeability field using selective 

updating of basis functions. Updating 100% (left) and 25% 
(right) of the basis functions. Mobility ratio M=10. The 
reference permeability field is shown in Fig. 3a.  
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Fig. 11 – Case 1: Reduction of misfit in time-shift and amplitude of 
the water-cut using selective work reduction also for the 
inversion system. Mobility ratio M=0.5.            

    

 
a) 100% DU + 75% CB                     b) 100% DU + 50% CB 
 

Fig. 9 – Case 1: Derived permeability field using selective 
updating of basis. Updating 100%, 75%, 50% and 25% of the 
basis functions (left to right from top), respectively. Mobility 
ratio M=0.2. The reference permeability field is shown in Fig. 
3a. 

 

 

c) 50% DU + 75% CB         d) 50% DU + 50% CB 
 
Fig. 12 – Case 1: Derived permeability field using selective work 

reduction also for the inversion system. Mobility ratio M=0.5. 
The reference permeability field is shown in Fig. 3a. 

Fig. 10 – Case 1: Derived permeability field without updating basis 
functions throughout the history matching procedure for 
M=0.2 (left) and M=10 (right). 
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(a) Initial permeability                                                                               (b) Reference permeability 

 

 
(c) Derived permeability (MsMFEM [full])            (d) Derived permeability (MsMFEM [reduced])                    (e) Derived permeability (TPFA) 
 
Fig. 13 – Case 2: Initial, derived and reference permeability fields. 
 
 
 

 
Fig. 14 – Case 2: Well configuration for the geologic model example. The symbol x represents a producer while the symbol o represents an 

injector. 
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Fig. 15 – Case 2: Water-cut match for 12 of the 69 production wells included in the history match of the geologic model (MsMFEM [full]). For 

each plot the solid red line, the dash blue and the dashed purple line represents the reference, the initial and the updated water-cut curve, 
respectively. 

 

 
                                                         (a) Shift-time Misfit (days).                             (b) Amplitude Misfit.  
 
Fig. 16 – Case 2: Reduction of misfit in time-shift and amplitude of the water-cut for history matching of geologic model. Forward simulation: 

MsMFEM [full] (blue solid curve), MsMFEM [reduced] (red dashed curve) and TPFA (black dash-dotted curve). 
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a) Derived-Initial Permeability Difference (Layer 5-8)                b) True-Initial Permeability Difference (Layer 5-8) 

 

 
c) Derived-Initial Permeability Difference (Layer 29-32)            d) True-Initial Permeability Difference (Layer 29-32) 

 
 

Fig. 17 – Case 2: Comparison of the “derived-initial” permeability difference and the “true-initial” permeability (MsMFEM [full]). 
 


