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Abstract

During the last decades, streamline methods have emerged
as highly efficient simulation tools that are well-suited for
e.g., history matching and simulation of large and com-
plex reservoir models. Streamline methods are based on a
sequential solution procedure in which pressure and fluid
velocities are computed by solving a pressure equation on a
grid in physical space and the fluid transport is computed
by solving 1-D transport problems along streamlines. The
sequential Eulerian-Lagrangian procedure is the key to the
high computational efficiency of streamline methods. On
the other hand, it necessitates mapping of saturations (or
fluid compositions) back and forth between the Eulerian
pressure grid and the Lagrangian streamlines. Unfortu-
nately, this introduces mass-balance errors that may ac-
cumulate in time and in turn yield significant errors in
production curves.

Mass-balance errors might be reduced by considering
higher-order mapping algorithms, or by increasing the
number of streamlines. Since the computational speed
scales linearly with the number of streamlines, it is clearly
desirable to use as few streamlines as possible. Here we
propose a modification of the standard mapping algorithm
that: (i) improves the mass-conservation properties of the
method and (ii) provides high-accuracy production curves
using few streamlines.

Mass conservation is improved by changing quantities
in the transport equation locally, and we show that these

modifications do not significantly affect the global satura-
tion errors as long as a sufficient number of streamlines is
used. Moreover, we propose an adaptive strategy for ensur-
ing adequate streamline coverage. The efficiency and ac-
curacy of the modified streamline method is demonstrated
for Model 2 from the Tenth SPE Comparative Solution
Project. Highly accurate production curves (compared to
reference solutions) are obtained in less than ten minutes
using one processor on a standard (Intel Core 2 Duo) desk-
top computer.

Introduction

Streamline simulation has experienced increasing indus-
try interest and rapid technology development in recent
years and is now a very efficient alternative to traditional
flow modelling by numerical methods such as finite differ-
ences or finite volumes. Modern streamline methods can be
used to compute complex flow physics such as compress-
ible three-phase models with full PVT, multicomponent
models or dual-porosity models (Thiele et al., 1997; Crane
et al., 2000; Di Donato and Blunt, 2004). Still, streamline
simulation is most efficient for simplified physical mod-
els and engineering queries based on the 80-20 principle:
80% of the answer in 20% of the time available (Thiele,
2005). In particular, due to its low memory requirements
and high computational efficiency, streamline simulation
today offers the opportunity to solve outstanding engineer-
ing queries that might otherwise be difficult or impossible
to address using other approaches.

Streamline simulators are particularly suitable for solv-
ing large and geologically complex models, where the fluid
flow is dictated primarily by heterogeneities in rock proper-
ties (permeability, porosity and faults/fractures), well po-
sitions, and phase mobilities. The typical application is
for production regimes involving fluid displacement, e.g.,
water flood or gas injection. Other mechanisms, like capil-
lary effects and expansion-driven flows, may be modelled,
but not with the same degree of accuracy and efficiency.
Primary examples of application are flow simulations on
multimillion geocellular models of complex heterogeneity,
and repeated simulations on equiprobable geological re-
alisations to quantify sensitivity of model parameters and
uncertainties in prediction forecasts. Generally, streamline
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simulators are progressively being used more by operating
companies as an alternative to traditional reservoir simu-
lators in several reservoir engineering workflows, including:
screening of enhanced recovery projects, rapid sensitivity
studies, history matching, uncertainty assessment, upscal-
ing, flood optimization, or simulation studies of sector or
full-field models.

The computational setup within a streamline simulator
can be briefly described as follows. First, the pressure
distribution over a conventional 3-D grid is computed in
order to determine the trajectories of 1-D streamlines that
represent flow-paths. Next, the material balance equations
can be transformed in terms of the so-called time-of-flight
along a streamline and split into two parts, namely the
part along the streamline and the part in the direction
of gravity. These 1-D equations are then solved by an
appropriate numerical method and the resulting saturation
or concentration values are mapped back onto the 3-D grid.
In each time-step, the velocity field is recomputed, which
implies that streamline trajectories will change in time for
dynamic flow conditions. For a more in-depth description
of streamline simulation and an overview of the literature
in this field, we refer the reader to the upcoming textbook
by Datta-Gupta and King (to appear) or to the survey
papers by Thiele (2005) and King and Datta-Gupta (1998).

The underlying mathematical formulation is both the
strength and the weakness of streamline simulation. The
operator splitting and the Lagrangian spatial discretiza-
tion, which are fundamental assumptions of streamline
methods, are the keys to obtaining high efficiency:

e The operator splitting used to decouple the computa-
tion of the velocity field (i.e., pressure) and the fluid
transport has the effect that the size of the pressure
steps is dictated by the flow dynamics, and not by the
spatial (finite-difference) discretization. For e.g., wa-
ter flood problems, this usually means that velocity
fields and streamlines only need to be updated infre-
quently.

e The 1-D transport problems along streamlines and
gravity lines can be solved very efficiently such that
the computational complexity of the transport step
scales linearly with the number of streamlines and the
number of cells traversed by each streamline.

e The number of streamlines typically required to ob-
tain an acceptable accuracy increases linearly with the
number of active cells.

These three points, together with the existence of near-
linear complexity linear solvers for the pressure equation
(Stiiben, 2000), imply that streamline simulation scales
(almost) linearly with model size, may be very memory
efficient, and offers a natural potential for parallel imple-
mentation. However, it is also evident that streamline sim-
ulation will loose its high efficiency for flows with a very
strong coupling between the pressure and the mass trans-
port equation.

Similarly, it is clearly desirable to use as few stream-
lines as possible to ensure efficient flow simulation. On the
other hand, the set of streamlines should be representa-
tive and sufficiently dense to ensure accurate prediction of

flow patterns and production responses, and to limit er-
rors in the mass balance. Lack of mass conservation is a
problem of particular concern to reservoir engineers, and
in this paper we will try to analyse the lack of mass con-
servation and suggest methodological improvements that
will strongly improve the mass balance. This will in turn
allow a significant reduction in the number of streamlines
required to ensure highly accurate production curves.

The rest of the paper is organized as follows: In the
next two sections we define our model problem and de-
scribe what we shall refer to as our “standard” or “original”
streamline method. The mass-balance problems are then
illustrated with an example, and we utilize a description
of the streamline spatial discretization given by Jimenez
et al. (2005) to explain the problem. We propose a change
of the original streamline method, and demonstrate that
the modified approach improves the mass balance and gives
accurate production curves using very few streamlines for
a large and complex reservoir model. We then study the
performance for various flow conditions on a very sim-
ple model and propose a strategy for ensuring adequate
streamline coverage, before demonstrating applicability to
a history-matching problem with more than a million grid
blocks and 69 producers. Some final remarks then con-
cludes the paper.

Model Problem

Since our focus in this paper is on the mass-balance prop-
erties of streamline methods, we will consider a simplified
model for water flooding. That is, we assume immiscible,
incompressible two-phase flow and disregard gravity and
capillary forces. Our flow model then consists of an ellip-
tic pressure equation

V-u=gq, u=—-M\(5KVp, (1)

and quasilinear hyperbolic transport equation

0S8
B+ V- (Fu(S)W) = . @

The primary unknowns in the coupled system (1)—(2) are
the pressure p, the total (Darcy) velocity u, and the water
saturation S. The underlying porous rock formation is
modelled in terms of the absolute permeability K and the
porosity ¢, which henceforth are assumed to depend on
the spatial variable only. Finally, \; = A\, + A, denotes
the total mobility, where the mobility of each phase, A; is
given as the relative permeability k,; of phase j divided by
the phase viscosity p; (j = o,w), and fi, = Ay /A is the
fractional flow of water.

The Streamline Method

The streamline method is based on a sequential solution
procedure. First the known initial saturation distribution
is used to compute the mobilities A\;(.S) in (1), after which
the pressure equation can be solved to give total velocity
u and pressure distribution p. Next, the total velocity u is
kept fixed in (2), while the saturation is advanced a given
time step. The new saturation values are used to update
the mobilities in (1), the pressure equation is solved again,
and so on.
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Instead of discretizing and solving (2) directly on a
grid, a streamline method decouples the three-dimensional
equation into multiple one-dimensional equations along
streamlines by introducing the time-of-flight variable,

e
o= [ (@)% ®)

which is the time it takes a passive particle to travel a
distance s along a streamline. In differential form (3) be-
comes,

or 10)
s Tl <~ u-Vr=9¢. (4)
Moreover, we have that 9/07 = u -V, which combined
with (4) can be used to rewrite the saturation equation
(2) as a one-dimensional equation to be solved along each
streamline,
05 O
ot or
The solution to the full three-dimensional problem (2) is
obtained by tracing numerous streamlines in the domain,
mapping the initial saturation distribution from the 3-D
pressure grid to the one-dimensional streamlines, and then
solving (5) along each streamline. Afterwards, the new
saturation values along streamlines must be mapped (or
averaged) back to the underlying 3-D grid to allow updat-
ing of the mobilities before the pressure equation can be
solved to recompute the velocity field.

—0. (5)

A Specific Implementation. An implementation of the
streamline method can be characterized by (i) the pro-
cedure for tracing streamlines, (ii) the choice of one-
dimensional solver, (iii) the strategy for spatial distribu-
tion of streamlines, and (iv) the algorithms for mapping
solution values back and forth between streamlines and
the underlying (pressure) grid. We now describe what we
shall refer to as our “standard” or “original” streamline
method.

In this work we only consider models with Cartesian
geometry, and we therefore use a simple semi-analytical
tracing procedure due to Pollock (1988). Given the entry
point and constant normal velocities on faces of a grid-
block, Pollock’s algorithm computes the exit point and the
incremental time-of-flight associated with transversing the
grid-block by assuming linear velocity variation in each
direction. This way, each streamline can be traced numer-
ically on a block-by-block basis from injector to producer
or vice versa, or alternatively from an arbitrary point in
the reservoir and forward to the producer and backward
to the injector. After the tracing, each streamline is given
as the indices of the blocks the streamline traverses, the
entry and exit points, and the incremental time-of-flights
for each block. These increments form the blocks in the
streamline grid {A7g ;} on which (5) will be solved.

To solve the one-dimensional problems we employ front-
tracking (see, e.g., Holden and Risebro, 2002), which is also
applied in a commercial streamline simulator (Bratvedt
et al., 1993; Bradtvedt et al., 1994). The front-tracking
method is unconditionally stable and can directly utilize
the time-of-flight grid resulting from the streamline trace,

which makes the method very efficient and devoid of nu-
merical diffusion. In contrast, solvers based on a finite-
volume formulation typically need to map the initial data
to a more regular grid (Batycky, 1997; Thiele, 2005).

The initial values for the one-dimensional problems are
obtained by picking up the piecewise constant values from
the underlying (pressure) grid, i.e., the grid-to-streamline
mapping is the simplest possible,

Ssl,i = Si. (6)

To map values from the streamlines back to the grid, we use
volumetric averaging. Volumes are associated with stream-
lines by considering each streamline as the centreline, or
more precisely, as a representation of the cross-section, of
a streamtube with an associated constant volumetric flux
gs1 = u(C)A(¢). This gives the volume of the streamline
as,

Vi = Vi = /O H(O)A(Q)dC

_ o) .
—/0 QSlde_QSZTsl-

The volume of a streamline in grid-block 4 is then Vi ; =
¢siATg i, and the precise definition of the streamline-to-
grid volumetric averaging is,

_ Zsl Ssl,i‘/sl,i
Zsl Vsl,i

We note that considering streamlines as fluid carriers also
makes it natural to define production characteristics sim-
ply by summing the contributions from all streamlines con-
nected to each well. For long time-steps, the fractional flow
of water at a producer may vary significantly; hence we
measure the accumulated production along each streamline
and define the total water production during a time-step
of size At by,

(7)

S; (8)

PRDA; = s w.s dt. 9
N gq.l/mf,xt)t (9)

The values of (8) and (9), and the accuracy with which
these values approximate the true saturation values and
production increments, depend on how fluxes are assigned
to the streamlines/streamtubes, and this may again be re-
lated to the procedure for distributing streamlines in the
reservoir. Here we generate equally spaced starting points
on the faces of grid-blocks containing injection wells. The
number of starting points on each face is proportional to
the volumetric flux across the face, which enables us to
consider the streamlines as carrying approximately equal
amounts of fluids, i.e., gy ~ C for some constant C. An
advantage of this approach is that the sums in (8) and (9)
can be computed incrementally as streamlines are traced
(Batycky, 1997) without knowing the associated volumet-
ric flux, thus allowing completely independent processing
of streamlines.

For the volumetric mapping (8) to make sense, each
grid-block should in principle be traversed by at least one
streamline. In general, there will be a number of grid-
blocks that are not traversed by any of the streamlines
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Fig. 1— Water-cuts for Producer 1 computed by a commercial
streamline simulator on the original SPE10 model, along with
our finite-volume and streamline solutions for the simplified
problem (no compressibility and gravity).

traced from the faces of injector-blocks. To make the
streamlines cover all grid blocks, one can perform an addi-
tional tracing process where one picks a point inside one of
the untraced blocks and traces a streamline from this point
forward to a producer and backward to an injector, or one
can follow Batycky (1997) and only trace streamlines back
to a block which is already traversed by streamlines. The
process is continued until there are no untraced blocks.
Alternatively, one may simply ignore the untraced blocks,
as these often are in regions that have a very small con-
tribution to the production characteristics. To keep the
amount of streamline tracing at a minimum we here em-
ploy the latter approach.

Mass-Balance Problems

For the particular streamline implementation described
above, the overall accuracy will primarily depend on the
number of streamlines used in the simulation. To illus-
trate the typical behaviour as the number of streamlines is
reduced, we consider Model 2 from the 10*" SPE Compar-
ative Solution Project (Christie and Blunt, 2001), which
is a large 3-D reservoir model consisting of 60 x 220 x 85
grid-blocks, each of size 20ft x 10ft x 2ft. The model is a
geostatistical realisation of a Brent sequence. The top 35
layers represent the Tarbert formation, which is a prograd-
ing near-shore environment. The lower 50 layers represent
the Upper Ness formation, which is fluvial.

The model is produced using a five-spot pattern of ver-
tical wells, where the central injector has an injection
rate of 5000 bbl/day (reservoir conditions), and the pro-
ducers in each of the four corners of the model produce
at 4000 psi bottom hole pressure. As in the original
model, we use quadratic relative permeability curves with
Swe = Sor = 0.2. The initial saturation is Sy = Sy, and
oil and water viscosities are p, = 3.0 cP and p,, = 0.3
cP, respectively. For simplicity, we have neglected gravity
and compressibility, since these have smaller impact on the
production curves than the numerical diffusion inherent in
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Fig. 2— Water-cuts for Producer 1 for various number of
streamlines. (In the legend, 1K = 1000.)

any numerical scheme. This can be seen in Fig. 1, which
compares a fine-grid reference solution from the SPE10
website (http://www.spe.org/csp/) with two fine-grid
solutions for the simplified physical model; one computed
by a first-order upstream finite-volume method, and the
other computed by the “standard” streamline method in-
troduced above with 600000 streamlines. The simplified
streamline solution will therefore be used as a reference
solution in the rest of the paper. We note that we use
the same time-steps as the reference solver: 25 steps with
smaller step-sizes in the beginning of the simulation.

Figure 2 displays the water-cut in Producer 1 for sim-
ulations with various number of streamlines. The figure
shows that the water production is underestimated when
the number of streamlines is too small. Since the cor-
rect total amount of injected water is distributed among
streamlines at the injecting end of each streamline, there
must effectively be a loss of mass in the method. We can
quantify this loss by, e.g., computing the relative mass-
balance error for water in each time-step,

INJAt - PRDAt + FIPt - FIPt+At
INJa¢ ’

EALt — (10)
which is equivalent to the volume-balance error, since we
have assumed incompressibility. Figure 3 shows that the
errors increase rapidly in the beginning of the simulation
and decay slowly as the corresponding water-cut curves
increase.

Spatial Errors in Streamline Discretizations. To ex-
plain the origin of the observed mass-balance errors we
follow Jimenez et al. (2005): Using the bi-streamfunctions
(Bear, 1972) for which,

u=Vy x Vy, (11)

we can define an alternative curvlinear coordinate system
(1, ¢, x) for three-dimensional space where the velocity
u, and hence the 7 coordinate curves, i.e., the streamlines,
will be orthogonal to the @ and x coordinate curves. It
is this orthogonality relation (11) that is responsible for
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Fig. 3— Relative mass-balance errors in the streamline method
for various number of streamlines.

the particularly simple form of the saturation equation (5)
along streamlines. The discretization along streamlines is
defined by the streamline grids obtained from the trac-
ing algorithm, while the transversal discretization is deter-
mined by the partition of the volume into streamtubes, or
in our case, the distribution of streamlines and the associ-
ation of fluxes to streamlines.

The pore volume of this discretization will generally not
match the pore volume of the original grid, which will lead
to mass-balance errors when mapping saturation between
the streamlines and the pressure grid. From (7) we have
that the streamline pore volume is given by,

Vg = ZQSlTsl; (12)
sl

but both gs; and 74 are subject to approximation errors.
As noted by Matringe and Gerritsen (2004), the simple
semi-analytical streamline tracing approach gives errors,
even if given analytical fluxes on the grid-block faces of
Cartesian grids, since the velocity field is approximated
by a piecewise bilinear function. Assigning equal fluxes to
all streamlines is also slightly inaccurate since the fluxes
actually represent the velocity integral across the cross-
section of the associated streamtube. Even if the velocity
is considered to be constant on injector-block faces, errors
are introduced because the initial cross-section areas of the
streamtubes will not be equal unless the number of start-
ing points on each face is a perfect square. However, as
the number of streamlines is reduced, the primary source
of errors may be the assumption that the time-of-flight
along a streamline is a good approximation to the average
time-of-flight over cross-sections of the associated stream-
tube. To illustrate, Fig. 4 shows the time-of-flight values
for numerous points on the cross-section of two grid-blocks
from the fluvial formation of the SPE10 model discussed
above. Here, the variation in 7 is actually of the same mag-
nitude as the values themselves, hence the aforementioned
assumption may yield very inaccurate streamline volumes.

I -

Fig. 4— Time-of-flight in two different grid blocks of Layer 76
in the SPE10 model sampled in 200 x 200 evenly distributed
points inside each block.

Improving the Mass Balance

The presence of mass-balance errors in the streamline solu-
tions is a well-known problem, and improving the accuracy
and mass-balance properties of streamline methods is an
active area of research. However, much of this research
seems to be geared toward problems with complicated ge-
ometry and/or complicated physics. For instance, stream-
line tracing on corner-point geometry has been investigated
by Jimenez et al. (2005) and Haegland et al. (2006), while
Gerritsen et al. (2005; and related works) studied issues
such as streamline distribution and more accurate mapping
algorithms in the context of gas injection simulations. The
latter works represent a fundamental change of the stan-
dard streamline approach, where streamlines are no longer
viewed as fluid carriers, and saturations are mapped to
the underlying grid using a statistical regression technique
(kriging). This gives a large degree of freedom in distribut-
ing streamlines in the reservoir, but involves the solution of
linear systems for the kriging weights, which may dominate
the computation time for problems such as water-flooding,
where the computation of the one-dimensional solutions is
extremely efficient. Also, the natural way of estimating
well production (9) is no longer applicable unless a volu-
metric flux is associated with each streamline.

Within the framework of regarding streamlines as fluid
carriers, (12) shows that there are really only two parame-
ters we can play with to improve the mass-balance proper-
ties of streamline methods, namely the streamline fluxes,
s, and the streamline time-of-flights, 75;. The exact prop-
erties of these are functions of the particular choices made
in the streamline method implementation, and as noted in
the previous section, both parameters may contain large
errors for the specific implementation considered here. The
close match between the reference streamline simulation
and the finite-volume solver (Fig. 1) implies that the
streamline tracing is sufficiently accurate for this problem,
although we note that more accurate tracing on Cartesian
grids is possible, for instance by utilizing velocity fields
computed with higher-order mixed finite-element methods
(Matringe et al., 2006).

The association of fluxes with streamlines is within the
present framework related to the distribution of stream-
lines, since we assume equal flux for all streamlines. To
bring the streamline fluxes closer to the actual velocity in-
tegral over the streamtube cross-section, we may consider
scaling ¢4 according to the interpolated velocity at the
starting point and the cross-section area of the associated
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Fig. 5— Producer 1 water-cut for various number of stream-
lines when starting streamlines from both injectors and pro-
ducers, and scaling the streamline fluxes according to the per-
pendicular bisection areas.

streamtube (Ponting, 1998; Pallister and Ponting, 2000).
Lifting the restriction of equal streamline fluxes also makes
it possible to apply other streamline distribution schemes.
For instance, in situations where there is a large variation
in total fluid rates between different producers, it may be
beneficial to start streamlines also on the faces of well-
blocks containing producers to ensure that sufficient accu-
racy is achieved even for wells with small rates.

To study the influence of these factors, we perform sim-
ulations where the starting points of streamlines are gen-
erated on the block-faces of both injectors and producers.
For each face of grid-blocks containing an injector, the total
volumetric flux is divided among the streamlines penetrat-
ing the face, with weights given by the areas of a perpendic-
ular bisection of the block face. We have chosen to ignore
the velocity variation over the faces since Ponting (1998)
found that this only had a minor effect. Figure 5 shows
that this alternative approach to streamline distribution
and flux computation is not significantly better than the
original approach for the SPE10 case, although a slight
improvement is detectable.

The results above indicate that the primary source of er-
ror, as the number of streamlines is reduced, is indeed that
the time-of-flight along streamlines is not an accurate rep-
resentation of the average time-of-flight over cross-sections
of the associated streamtubes. Increasing the number of
streamlines decreases the streamtube cross-sections and
hence reduces these errors. However, considering the very
large time-of-flight variation shown in Fig. 4, it appears
that a large number of streamlines is necessary to obtain
accurate streamline volumes and thereby low mass-balance
errors. On the other hand, if we insist on keeping the
number of streamlines low, we can use the fact that mass
should be conserved, and correct the computed time-of-
flight values to enforce the mass-balance constraint. We
will have exact conservation of mass if the streamline vol-
ume matches the true pore volume, i.e., Y~ Vy; =V, in
every grid-block touched by streamlines. In this case the
mappings between streamlines and the pressure grid pre-

serve mass. Indeed, for the grid-to-streamline mapping (6)
we have,

Vi, grid = Z ViSi = Z(Z Vsl,i)S
; i sl

(13)
= Z Z ‘/sl,issl,i = Vaw, sl
sl i
and similarly for the streamline-to-grid mapping (8),
Vw,sl = Z Z ‘/;l,issl i Z Z sl ’LSSl i
sl i i 251 VGZ i (14)

= Z ‘/;,S’L = Vw,gmd7
[

where Vi, griq and V,, o are the total volumes of water on
the the pressure and streamline grids, respectively. Since
the streamline flux is constant along the streamline path,
our only option for ensuring )", Vi ; = Vi is to modify
the local time-of-flight values, A7y ;. Specifically, prior to
solving the one-dimensional saturation equation (5) along
streamlines, we propose to scale the time-of-flight values
in block i by a factor a; = V;/ )", Vir,i. This means that
streamlines can no longer be processed independently of
each other, and we need to store streamlines in memory,
or alternatively perform the complete tracing procedure
twice; once to compute the values of ay;, and then a sec-
ond time for the solution of the one-dimensional problems.
The memory requirement for storing streamlines is usually
lower than what is necessary for the solution of the pres-
sure equation (1), hence the former approach is preferable
since tracing is an expensive process.

Scaling the time-of-flight values amounts to locally
stretching or shrinking the grid on which the one-
dimensional saturation equation (5) is solved. Unless the
errors in the streamline tracing are large, the grid obtained
by the tracing is the correct one, and the modifications will
result in less accurate one-dimensional solutions. In other
words, by choosing to enforce mass conservation, we locally
introduce errors, but as we demonstrate below, the global
properties of the resulting solutions are better. However,
we must take special care not to ruin important character-
istics of the correct one-dimensional solutions. A quantity
of particular interest is the breakthrough-time for produc-
ers, and to make sure this is estimated correctly, we only
apply the time-of-flight scaling along streamlines where
breakthrough has occurred.

Figures 6 and 7 show water-cuts for Producer 1 and
and relative mass-balance errors for various number of
streamlines when using the modified streamline approach.
Mass-balance errors are still large initially since the time-
of-flight scaling is only applied after breakthrough, but the
errors decrease rapidly. The improvement on the water-cut
curves is significant, to say the least, with as few as 5000
streamlines giving acceptable results. We can quantify the
error in a water-cut curve w(t) by,

ref”

d(w) = [[w — w™|2/[[w |2, (15)

and Table 1 shows that the results are similar also for
the other three producers. For completeness, Table 1 also
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Fig. 6— Water-cuts for Producer 1 for various number of
streamlines when using the modified streamline method.
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Fig. 7— Relative mass-balance errors in the streamline method
for various number of streamlines when using the modified
streamline method.

shows the corresponding results for the standard stream-
line approach, where we have started streamlines in both
injectors and producers and used the perpendicular bisec-
tion approach above to assign fluxes to streamlines, as we
previously showed that this gives slightly better results.

Since the time-of-flight scaling introduces local errors in
the one-dimensional saturation solutions, we may ask if the
global saturation solutions now are less accurate than for
the original approach. We therefore compute saturation
errors in the porosity-weighted L!-norm,

3(S) = llg(S = 5"/ 165™!|Ir, (16)

for each time-step, and the average through the simula-
tion is displayed in Table 1. The results show that the
modified streamline method gives slightly more accurate
saturation fields than the original method for the same
number of streamlines, but generally does not allow a sig-
nificant reduction in the number of streamlines if one is to
retain a certain accuracy.

If one, on the other hand, is mainly interested in accu-
rate production curves, Table 1 shows that the number
of streamlines can be significantly reduced. For instance,
if we allow a 5% water-cut error as measured by (15), we
see that we may need 50 000 streamlines in the original ap-
proach, whereas 5000 streamlines is sufficient when using
the modified method. This yields a significant speedup for
the transport part of the simulation, since the computa-
tion time associated with transport in theory scales linearly
with the number of streamlines. The timing results in Ta-
ble 1 show that the actual scaling is not truly linear as
the number of streamlines becomes very small. However,
this is to be expected since our simulator is optimized for
relatively large numbers of streamlines and otherwise negli-
gible overhead associated with streamline distribution, flux
computations, and saturation mappings may become sig-
nificant when using a small number of streamlines. Still,
we see that going from 5000 to 50000 streamlines gives
at least five times speedup for the transport step. Fi-
nally, we note that as the number of streamlines is reduced,
the total simulation time is dominated by the solution of
the pressure equation (1). To obtain a more substantial
speedup for the overall simulation, the modified streamline
method should be considered in combination with approx-
imate pressure solution techniques, e.g., with a multiscale
method as discussed by Aarnes et al. (2005).

A Simpler Example

Since our proposed modification to the streamline method
introduces local errors along streamlines, we might sus-
pect that the approach only represents an improvement
for difficult models where the original streamline method
gives very large errors, and that it might yield significantly
less accurate results for simpler models. In this section we
therefore apply the modified and original streamline meth-
ods to a small model with homogeneous permeability and
porosity data. In particular, we use a 32 x 32 x 8 model
with grid-block aspect ratio 1 : 1 : 0.1, with wells placed
in a five-spot pattern and the four producers producing at
equal bottom-hole pressures. We assume quadratic relative
permeability curves with zero residual oil and water satu-
rations, and perform simulations for three different values
of the end-point mobility ratio Mena = fto/ fiw, correspond-
ing to unit mobility ratio (Me,q = 1), favourable displace-
ment (Meng = 0.1) and high-mobility ratio displacement
(Mena = 10), respectively. The dimensionless simulation
time was 2.0 PVI, and for all three scenarios we verified
that the chosen number of time-steps was sufficient for sta-
bility of the sequential time-stepping scheme.

Tables 2 —4 show the water-cut errors for both stream-
line approaches with various number of streamlines in each
of the three scenarios. The results are indecisive and we
cannot conclude that the modified streamline method sig-
nificantly improves the accuracy of the production curves
for this homogeneous model. On the other hand, the time-
of-flight scaling does generally not cause the new approach
to perform worse than the original method, either. This
implies that the modified streamline approach can be safely
applied also for simple datasets.
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Adaptive Streamline Coverage The results in Ta-
bles 2—-4 also show that there is a large accuracy dif-
ference, for both methods, between the three displacement
scenarios. In particular, Table 3 shows that a larger num-
ber of streamlines is required to obtain accurate results for
favourable displacement conditions. The large errors ob-
served when using few streamlines for this piston-like dis-
placement are caused by insufficient streamline coverage,
since we do not ensure that all grid-blocks are traversed
by streamlines. This leads to errors in the computed pres-
sure and velocity fields, thus shifting the predicted time
of breakthrough. For scenarios with high mobility-ratios,
the pressure/velocity solutions are less sensitive to errors
in the underlying saturation field, because the saturation
variation is generally much smoother.

To alleviate the accuracy problems for favourable dis-
placement conditions, we could trace streamlines through
every grid-block, using, e.g., the approach of Batycky
(1997). However, many grid-blocks will typically be lo-
cated in low-flow regions that do not significantly affect
the solution. We therefore propose an adaptive approach
to streamline coverage, where we only demand that a
given fraction 8 of the pore volume should be traversed
by streamlines. Before the tracing starts, grid-blocks are
sorted in descending order by absolute velocity |ul, and we
trace back from untouched blocks in sorted order until the
given pore-volume target has been met. We also ensure
that each well is properly covered by starting a specified
number of streamlines from each well, with the distribu-
tion of streamlines on well-block faces given according to
the fluxes, as before.

In Tables 5 — 7 we have displayed the average number of
streamlines and water-cut errors when applying this adap-
tive approach in combination with the modified stream-
line method for the three different displacement scenarios.
Initially we trace 100 streamlines from each well, which is
why the minimum number of streamlines is 500. Compared
with Tables 2 —4 we see that tracing streamlines adap-
tively based on flow velocity gives more accurate results
using fewer streamlines. As expected, the optimal value
of 3 depends on the displacement conditions, with piston-
like displacement requiring a larger fraction of the pore
volume to be covered. On the other hand, the adaptivity
has barely a significant effect for the scenario with high-
mobility ratio, where we actually could have used even
fewer streamlines. This helps explain why we obtained
accurate results using extremely few streamlines for the
SPE10 model above.

Application Example: History Matching

The results and discussion above clearly indicate that the
modified streamline method is most suitable for applica-
tions where one is primarily interested in accurate produc-
tion responses rather than accurate predictions of the dy-
namic distribution of fluids. Examples of such applications
are history matching and ranking of multiple equiprobable
geostatistical models.

In the following we consider history-matching of a high-
resolution geomodel using a generalized travel-time inver-
sion method (Vasco et al., 1999; He et al., 2002). The
inversion method consists of four major steps that are re-

peated until a satisfactory match in production data is
obtained: (i) Multiscale-streamline simulation to compute
production responses at the wells. (ii) Quantification of
the mismatch between observed and computed production
responses via a generalized travel time, and computation
of an optimal time shift that systematically shifts the com-
puted production responses towards the observed data.
(iii) Computation of streamline-based analytic sensitivi-
ties of water-cut data with respect to permeability. (iv)
Updating of grid-block permeability values to match the
production history via inverse modelling (minimization of
a misfit functional). More details of the inversion proce-
dure are given in (Stenerud et al., 2007).

We consider a synthetic geomodel given by a uniform
Cartesian grid with 256 x 128 x 32 cells, where each cell
has dimensions 10mx10mx2m. A total number of 32 ver-
tical injectors and 69 vertical producers are included in the
simulation model. The injectors inject water at a constant
total volumetric reservoir rate of 1609 bbl/day, and each
producer produces fluids at a constant reservoir volume
rate fulfilling the total voidage rate. The flow model as-
sumes quadratic relative permeability curves with an end-
point mobility ratio of Me,q = 5.

The production history to be matched consists of 2475
days of water-cut data from the 69 producers, obtained by
simulation on a reference geomodel having log-normally
distributed permeability with mean 2.2 mD and values in
the interval [0.017,79.5] mD; see Fig. 8. An initial perme-
ability model was generated by assuming the permeability
to be known in each well block and using sequential Gaus-
sian simulation to generate multiple realizations.

The inversion algorithm converged in six iterations, after
which the misfit in time-shift and amplitude (see Stenerud
et al., 2007) were reduced to 7.8% and 53.6% of their initial
values, respectively. In the inversion, we use the original
streamline method with 500000 streamlines and 15 uni-
form pressure steps of 165 days for each forward simula-
tion. To solve the pressure equation we use an approxi-
mate, but highly efficient multiscale method (Aarnes and
Lie, 2004). The total time for the whole inversion was 1
hour and 27 minutes on a Linux workstation with a 2.4
GHz Intel Core 2 Duo processor with 4Mb cache and 3 Gb
memory. Using the modified streamline method we were
able to reduce the number of streamlines to 50000, and
thereby reduce the total time for inversion to 39 minutes
without reducing significantly the quality of the obtained
history match. In fact, the time-shift and amplitude resid-
uals were reduced to 7.6% and 48.7% of their original val-
ues, respectively.

Concluding Remarks

In this paper we have introduced a modified streamline
method which greatly reduces the mass-balance errors
when simulating large and complex reservoir models using
few streamlines. Improved mass-conservation properties
are achieved by locally scaling the time-of-flight grids, on
which the one-dimensional transport equations are solved,
to enforce mass conservation in the mappings between the
Eulerian pressure grid and the Lagrangian streamlines. As
a consequence, we are able to obtain accurate production
curves on a million grid-block reservoir model with five
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Fig. 8— Geomodels for the 3D history-matching case: ref-
erence model (top) initial model (middle), and final match
(bottom).

wells using only 5000 streamlines, and the total simula-
tion time is less than ten minutes using a standard desktop
computer.

We verified that the modified approach is applicable also
to simple models by showing that its performance was
similar to that of the original method on a homogeneous
dataset. We also demonstrated that favourable, piston-
like displacement might be challenging to simulate using
few streamlines, and proposed an adaptive approach to
streamline coverage based on tracing streamlines from un-
touched cells in high-flow regions until a given fraction of
the pore volume has been traversed.

We have not considered improvements in the algorithms
for mapping saturations between streamlines and the pres-
sure grid, and the modified approach does therefore not
give significantly better saturation solutions than the orig-
inal method. This implies that the modified streamline
method is best suited for applications that depend heavily
on rapid estimation of production responses. As an ex-
ample we demonstrated significant speed-up for a history-
match of a million grid-block model with 32 injectors and
69 producers.

Finally, we remark that our modified method probably
has an even larger potential for non-Cartesian grids, where
Pollock’s method for analytical tracing of streamlines in-

troduces large errors, both in the time-of-flights and in
the actual streamline paths; see Heegland et al. (2006) for
further details.

Nomenclature

Roman letters

A Area

C Constant

f Fractional flow

FIP  Volume of fluid (water) in place
K Permeability tensor

INJ Injected volume (water)

k. Relative permeability

Menqa  End-point mobility ratio

P Pressure

PRD  Produced volume (water)

S Distance along streamline
S Saturation

Swe Connate water saturation
Sor Residual oil saturation

t Time

u Total Darcy velocity

V Volume

w Water-cut curve

q Volumetric rate

Greek letters

a(+) Relative error

€ Relative mass balance error
A Mobility

o Viscosity

10) Porosity

X Bi-streamfunctions

T Time-of-flight

¢ Space coordinate along streamline
Subscripts

i Block number

j Phase number

sl Streamline number

st Streamtube number

0, w Oil and water phases
t,tot  Total

At Time-step
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NSL | O/M P1 P2 P3 P4
2000 @) 5.07e-02 | 2.33e-02 | 3.11e-02 | 2.90e-02
M 3.93e-02 | 2.52e-02 | 2.69e-02 | 2.89e-02
1750 0O 4.31e-02 | 2.86e-02 | 3.30e-02 | 2.86e-02
M 3.64e-02 | 2.18e-02 | 2.37e-02 | 2.23e-02
1500 O 5.08e-02 | 2.91e-02 | 4.59e-02 | 3.21e-02
M 5.11e-02 | 3.92e-02 | 3.15e-02 | 3.82e-02
1950 @) 6.66e-02 | 5.21e-02 | 6.25e-02 | 5.49e-02
M 6.30e-02 | 3.51e-02 | 4.55e-02 | 3.92e-02
1000 @) 5.56e-02 | 4.33e-02 | 5.78e-02 | 3.97e-02
M 4.73e-02 | 3.76e-02 | 5.00e-02 | 4.09e-02
750 @) 9.25e-02 | 8.73e-02 | 9.09e-02 | 9.17e-02
M 7.37e-02 | 7.03e-02 | 5.47e-02 | 7.30e-02
500 O 1.44e-01 | 1.12e-01 | 1.06e-01 | 1.15e-01
M 1.19e-01 | 9.82e-02 | 9.64e-02 | 1.10e-01
9250 0O 1.68e-01 | 2.15e-01 | 2.43e-01 | 2.19e-01
M 1.49e-01 | 1.61e-01 | 1.77e-01 | 1.59e-01

Table 2— Water-cut errors, 6(w), on the homogeneous model
for the original (O) and modified (M) versions of the stream-
line method, when the end-point mobility ratio Mg = 1.
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NSL Method P1 P2 P3 P4 0(S) Ty (8) Tiot (S)
100000 Original 8.91e-03 6.24e-03 2.44e-03 2.99e-03 2.75e-02 508.92 974.94
Modified 9.86e-03 4.61e-03 1.97e-03 3.67e-03 2.83e-02 508.20 979.03
50000 Original 2.53e-02 1.72e-02 6.42e-03 9.38e-03 4.00e-02 266.48 728.42
Modified 1.66e-02 7.88e-03 3.72e-03 7.03e-03 3.81e-02 265.87 727.79
925000 Original 6.49e-02 4.85e-02 1.74e-02 2.28e-02 5.89e-02 147.36 608.46
Modified 1.43e-02 1.47e-02 8.12e-03 7.12e-03 5.27e-02 146.23 613.00
10000 Original 1.78e-01 1.29e-01 5.53e-02 7.30e-02 9.54e-02 75.65 541.17
Modified 3.26e-02 1.94e-02 1.56e-02 1.38e-02 8.06e-02 75.33 545.09
5000 Original 3.20e-01 2.30e-01 1.02e-01 1.30e-01 1.29e-01 50.91 512.75
Modified 4.25e-02 2.19e-02 1.86e-02 2.37e-02 1.12e-01 51.74 516.63

Table 1— Errors in water-cuts J(w) for producers P1 to P4, saturation error §(.5), computational time for the streamline part of the
simulation T;;, and total computation time T}, for the original and modified streamline methods on the SPE10 model for various
number of streamlines (NSL).

NSL | O/M P1 P2 P3 P4 NSL | O/M P1 P2 P3 P4
2000 @) 4.56e-02 | 9.18e-02 | 8.97e-02 | 9.46e-02 2000 0O 2.55e-02 | 1.33e-02 | 5.36e-02 | 1.35e-02
M 4.43e-02 | 9.30e-02 | 8.97e-02 | 9.47e-02 M 2.58e-02 | 2.45e-02 | 2.33e-02 | 8.44e-03
1750 @) 3.29e-02 | 6.53e-02 | 6.78e-02 | 5.17e-02 1750 O 2.89e-02 | 1.36e-02 | 6.15e-02 | 1.04e-02
M 3.07e-02 | 6.44e-02 | 7.09e-02 | 5.08e-02 M 2.78e-02 | 1.94e-02 | 2.63e-02 | 8.13e-03
1500 @) 7.01e-02 | 1.20e-01 | 8.98e-02 | 1.05e-01 1500 @) 3.37e-02 | 1.79e-02 | 4.43e-02 | 1.92e-02
M 5.27e-02 | 1.13e-01 | 8.96e-02 | 1.04e-01 M 3.14e-02 | 1.00e-02 | 3.88e-02 | 9.23e-03
1250 @) 6.76e-02 | 1.13e-01 | 1.42e-01 | 8.19e-02 1250 O 3.93e-02 | 2.42e-02 | 4.93e-02 | 2.60e-02
M 4.60e-02 | 1.09e-01 | 1.42e-01 | 6.32e-02 M 2.63e-02 | 2.61e-02 | 5.36e-02 | 2.72e-02
1000 @) 1.40e-01 | 1.62e-01 | 1.76e-01 | 1.67e-01 1000 @) 5.33e-02 | 6.55e-02 | 3.33e-02 | 3.19e-02
M 1.39e-01 | 1.62e-01 | 1.76e-01 | 1.67e-01 M 6.68e-02 | 2.29e-02 | 5.79e-02 | 4.14e-02
750 @) 3.40e-01 | 3.14e-01 | 3.39e-01 | 3.57e-01 750 O 5.05e-02 | 3.52e-02 | 4.68e-02 | 4.27e-02
M 3.39e-01 | 3.15e-01 | 3.40e-01 | 3.57e-01 M 5.84e-02 | 2.73e-02 | 5.09e-02 | 4.79e-02
500 @) 4.26e-01 | 4.50e-01 | 4.65e-01 | 4.69e-01 500 @) 6.97e-02 | 3.53e-02 | 5.19e-02 | 4.42e-02
M 4.25e-01 | 4.34e-01 | 4.64e-01 | 4.61e-01 M 3.49e-02 | 4.35e-02 | 5.22e-02 | 3.14e-02
9250 @) 7.79e-01 | 8.20e-01 | 8.44e-01 | 7.99e-01 9250 @) 7.07e-02 | 9.37e-02 | 1.04e-01 | 1.01e-01
M 7.86e-01 | 8.17e-01 | 8.42e-01 | 8.00e-01 M 7.42e-02 | 9.58e-02 | 1.20e-01 | 8.96e-02

Table 3— Water-cut errors, 6(w), on the homogeneous model
for the original (O) and modified (M) versions of the stream-
line method, when the end-point mobility ratio Menq = 0.1.

Table 4— Water-cut errors, 6(w), on the homogeneous model
for the original (O) and modified (M) versions of the stream-
line method, when the end-point mobility ratio Meng = 10.

I¢] NSL P1 P2 P3 P4

1.0 | 875 | 3.54e-02 | 3.08e-02 | 2.50e-02 | 3.92e-02
0.9 | 714 | 3.86e-02 | 3.35e-02 | 3.14e-02 | 3.89e-02
0.8 | 576 | 4.74e-02 | 3.11e-02 | 2.28e-02 | 3.07e-02
0.7 | 500 | 6.88e-02 | 5.88e-02 | 7.22e-02 | 4.83e-02
0.6 | 500 | 6.83e-02 | 6.37e-02 | 7.03e-02 | 5.09e-02

Table 5— Average number of streamlines and water-cut er-
rors, 6(w), on the homogeneous model for various values of 3,
when the end-point mobility ratio Me,q = 1.
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16} NSL P1 P2 P3 P4
1.0 | 873 | 1.17e-02 | 7.52e-03 | 2.44e-02 | 1.37e-02
0.9 | 701 | 3.28e-02 | 2.95e-02 | 4.82e-02 | 2.17e-02
0.8 | 560 | 2.40e-01 | 2.31e-01 | 2.72e-01 | 2.43e-01
0.7 | 500 | 3.34e-01 | 3.85e-01 | 3.99e-01 | 3.90e-01
0.6 | 500 | 3.60e-01 | 3.78e-01 | 3.98e-01 | 3.86e-01

Table 6— Average number of streamlines and water-cut er-
rors, 6(w), on the homogeneous model for various values of 3,
when the end-point mobility ratio Mena = 0.1.

16} NSL P1 P2 P3 P4

1.0 | 873 | 3.45e-02 | 2.21e-02 | 2.26e-02 | 2.04e-02
0.9 | 722 | 3.42e-02 | 2.39e-02 | 2.41e-02 | 2.79e-02
0.8 | 616 | 2.69e-02 | 2.44e-02 | 3.35e-02 | 2.77e-02
0.7 | 519 | 2.19e-02 | 2.50e-02 | 5.94e-02 | 2.43e-02
0.6 | 500 | 2.39e-02 | 3.60e-02 | 6.80e-02 | 3.49e-02

Table 7— Average number of streamlines and water-cut er-
rors, 6(w), on the homogeneous model for various values of 3,
when the end-point mobility ratio Mg = 10.



