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Physical Scales in Subsurface Modelling

The scales that impact fluid flow in oil reservoirs range from

the micrometer scale of pores and pore channels

via dm–m scale of well bores and laminae sediments

to sedimentary structures that stretch across entire reservoirs.
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Geological Models

Expressing the geologists’ preception of the
reservoir:

here: geo-cellular models

describe the reservoir geometry
(horizons, faults, etc)

typically generated using geostatistics
(or process simulation)

give rock parameters (permeability and
porosity)

Rock parameters:

have a multiscale structure

details on all scales impact flow

permeability spans many orders of
magnitude

Ex: Brent sequence

Tarbert Upper Ness

Applied Mathematics 03/05/2010 3/16



Geological Models

Expressing the geologists’ preception of the
reservoir:

here: geo-cellular models

describe the reservoir geometry
(horizons, faults, etc)

typically generated using geostatistics
(or process simulation)

give rock parameters (permeability and
porosity)

Rock parameters:

have a multiscale structure

details on all scales impact flow

permeability spans many orders of
magnitude

Ex: Brent sequence

Tarbert Upper Ness

Applied Mathematics 03/05/2010 3/16



Heterogeneity versus Flow Modelling

Gap in resolution:

Geomodels: 107 − 109 cells

Simulators: 105 − 106 cells

−→ sector models and/or
upscaling of parameters

Many alternatives:

Harmonic, arithmetic, geometric,
. . .

Local methods (K or T )

Global methods

Local-global methods

Pseudo methods

Ensemble methods

Steady-state methods

⇓

⇑

Coarse grid blocks:⇓

⇑

Flow problems:
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Simulation on Seismic/Geologic Grid

Why do we want/need it?

Upscaling is a bottleneck in workflow,

gives loss of information/accuracy,

is not sufficiently robust,

extensions to multiphase flow are somewhat shaky

Simulation on seismic/geologic grid:

best possible resolution of the physical processes,

faster model building and history matching,

makes inversion a better instrument to find remaining oil,

better estimation of uncertainty by running alternative models
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Example: Gullfaks Field (North Sea)

Bypassed oil (4D inversion vs simulation):

Arnesen, WPC, Madrid, 2008
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Example: Giant Middle-East Field

Difference in resolution (10 million vs 1 billion cells):

From Dogru et al., SPE 119272
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How to Close the Resolution Gap. . . ?

Simplified flow physics:

Can often tell a lot about the fluid movement. “Full physics” is
typically only required towards the end of a workflow

Operator splitting:

fully coupled solution is slow..

subequations often have different time scales

splitting opens up for tailor-made methods

Use of sparsity / (multiscale) structure:

effects resolved on different scales

small changes from one step to next

small changes from one simulation to next
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From Upscaling to Multiscale Pressure Solvers

Standard upscaling:

⇓⇑
Coarse grid blocks:

⇓⇑
Flow problems:

Multiscale method:

⇓

⇑

Coarse grid blocks:

⇓⇑
Flow problems:
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Workflow with Automated Upgridding in 3D

1) Automated coarsening: uniform partition
in index space for corner-point grids

44 927 cells
↓
148 blocks

9 different coarse blocks

3) Compute basis functions

∇·ψij =

(
wi(x),

−wj(x),

for all pairs of blocks

2) Detect all adjacent blocks

4) Block in coarse grid: component for
building global solution
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Multiscale Methods: Potential

More flexible wrt grids than standard
upscaling methods: automatic coarsening

Reuse of computations, key to computational
efficiency

Natural (elliptic) parallelism:

giga-cell simulations
multicore and heterogeneous
computing

Fine-scale velocity −→ different grid for flow
and transport −→ dynamical adaptivity

Method for model reduction:

adjoint simulations −→ approximate
gradients
ensemble simulations with
representative basis functions

Multiphysics applications
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Operations vs. upscaling factor:

8x8x8   16x16x16 32x32x32 64x64x64
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7

Basis functions
Global system

Fine scale solution (AMG) O(n     )1.2

SPE10: 1.1 mill cells

Inhouse code from 2005:

Multiscale: 2 min and 20 sec
Multigrid: 8 min and 36 sec
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Multiphysics applications

Flow-based gridding:

with and without dynamic Cartesian refinement

Research by: Vera Louise Hauge, Shell scholarship
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Water-flood optimization:

Reservoir geometry from a Norwegian Sea field
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Forward simulations:
44 927 cells, 20 time steps, < 5 sec in Matlab
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History matching 1 million cells:

7 years: 32 injectors, 69 producers

Generalized travel-time inversion + multiscale:
7 forward simulations, 6 inversions

CPU-time (wall clock)
Solver Total Pres. Transp.
Multigrid 39 min 30 min 5 min
Multiscale 17 min 7 min 6 min
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Stokes–Brinkmann:
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Multiscale Methods: Limitations

How well do these methods handle complex physics?

No fully-implicit formulation available

Compressibility, gravity, . . .−→ correction functions

Strong coupling −→ more iterations and updates of basis and
correction functions

To force residual to zero, multiscale methods start to look like
multigrid/domain decomposition

Not yet applied to compositional/thermal/...
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Multiscale Methods: Limitations

Other issues:

How to choose good coarse grids for unstructured grids?

Need for global information or iterative procedures?

A posteriori error analysis (resolution or fine-scale junk)?

More than two levels in hierarchical grid?

How to include pore-scale models?
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Example: Fracture Corridors

800× 800 80× 80 upscaled 80× 80 multiscale
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Example: SPE10 with Fracture Corridors

x-y permeability saturation, reference saturation, multiscale
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Example: SPE10 with Fracture Corridors

field oil-production rate field water cut

best well: water cut in P1 worst well: water cut in P8
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Efficient Transport Solvers

Streamline methods

intuitive visualization + new data
subscale resolution
good scaling, known to be efficient

Optimal ordering

same assumptions as for streamlines
utilize causality −→ O(n) algorithm,
cell-by-cell solution
local control over (non)linear iterations

Flow-based coarsening

agglomeration of cells −→ simple and
flexible coarsening
hybrid griding schemes
heterogeneous multiscale method?
efficient model reduction

Flow pattern (CO2 injection):

Connections across faults:
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Time-of-flight (timelines):

Flooded volumes (stationary tracer):
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Efficient Transport Solvers

Streamline methods

intuitive visualization + new data
subscale resolution
good scaling, known to be efficient

Optimal ordering

same assumptions as for streamlines
utilize causality −→ O(n) algorithm,
cell-by-cell solution
local control over (non)linear iterations

Flow-based coarsening

agglomeration of cells −→ simple and
flexible coarsening
hybrid griding schemes
heterogeneous multiscale method?
efficient model reduction

Synthetic example in FrontSim:

13.5 million cells

Intel Xeon, 64 GiB, 3.2 GHz

Single thread, 13.5 GiB RAM

Runtime: 1 h 55 min
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Local iterations:

Johansen formation: 27 437 active cells

Global vs local Newton–Raphson solver

∆t global local

days time iter time (sec) iter

125 2.26 12.69 0.044 0.93

250 2.35 12.62 0.047 1.10

500 2.38 13.25 0.042 1.41

1000 2.50 13.50 0.042 1.99
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Cartesian grid:

Triangular grids:
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Different partitioning:

Uniform coarsening + NUC refinement

Uniform coarsening + Cartesian/NUC refinement
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Model reduction by coarsening:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pore volume injected

Water−cut curves

 

 

Reference solution
1581 blocks
854 blocks
450 blocks
239 blocks
119 blocks

Applied Mathematics 03/05/2010 14/16



Summary

Keys to enable fast simulation on seismic/geological grids:

Simplified physics

Operator splitting

Sparsity / (multiscale) structure

In the future: fit-for-purpose rather than one-simulator-solves-all..?
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Current and Future Research
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Geological representation

Coarse Detailed

Simple

Complex

“GeoScale”
technology

Commercial 
simulators

Fast reservoir
simulator

Superfast 

lightweight simulation

• Split fine / coarse scales
• Very fast
• Nearwell modeling

Largescale 
simulation

• Parallelization
• Multimillion   

reservoir cells• Support for timecritical 
processes

• Optimal model reduction for 
tradeoff between time and 
accuracy
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