Multiscale Methods for Capturing Geological Heterogeneity

Stein Krogstad and Knut-Andreas Lie

SINTEF ICT, Dept. Applied Mathematics

Rijswijk, May 3 2010

Applied Mathematics

Physical Scales in Subsurface Modelling

The scales that impact fluid flow in oil reservoirs range from

- the micrometer scale of pores and pore channels
- via dm-m scale of well bores and laminae sediments
- to sedimentary structures that stretch across entire reservoirs.

Geological Models

Expressing the geologists' preception of the reservoir:

- here: geo-cellular models
- describe the reservoir geometry (horizons, faults, etc)
- typically generated using geostatistics (or process simulation)
- give rock parameters (permeability and porosity)

Geological Models

Expressing the geologists' preception of the reservoir:

- here: geo-cellular models
- describe the reservoir geometry (horizons, faults, etc)
- typically generated using geostatistics (or process simulation)
- give rock parameters (permeability and porosity)

Rock parameters:

- have a multiscale structure
- details on all scales impact flow
- permeability spans many orders of magnitude

🕥 SINTEF

Gap in resolution:

- Geomodels: $10^7 10^9$ cells
- Simulators: $10^5 10^6$ cells

Gap in resolution:

- $\bullet~{\rm Geomodels}:~10^7-10^9~{\rm cells}$
- Simulators: $10^5 10^6$ cells

 \longrightarrow sector models and/or upscaling of parameters

Gap in resolution:

- $\bullet~{\rm Geomodels}:~10^7-10^9~{\rm cells}$
- Simulators: $10^5 10^6$ cells

 \longrightarrow sector models and/or upscaling of parameters

Gap in resolution:

- $\bullet~{\rm Geomodels}:~10^7-10^9~{\rm cells}$
- Simulators: $10^5 10^6$ cells

 \longrightarrow sector models and/or upscaling of parameters

Gap in resolution:

- $\bullet~{\rm Geomodels}:~10^7-10^9~{\rm cells}$
- Simulators: $10^5 10^6$ cells

 \longrightarrow sector models and/or upscaling of parameters

Gap in resolution:

- Geomodels: $10^7 10^9$ cells
- Simulators: $10^5 10^6$ cells

 \longrightarrow sector models and/or upscaling of parameters

Many alternatives:

- Harmonic, arithmetic, geometric,
 ...
- Local methods (K or T)
- Global methods
- Local-global methods
- Pseudo methods
- Ensemble methods
- Steady-state methods

SINTEF

Simulation on Seismic/Geologic Grid

Why do we want/need it?

- Upscaling is a bottleneck in workflow,
- gives loss of information/accuracy,
- is not sufficiently robust,
- extensions to multiphase flow are somewhat shaky

Simulation on Seismic/Geologic Grid

Why do we want/need it?

- Upscaling is a bottleneck in workflow,
- gives loss of information/accuracy,
- is not sufficiently robust,
- extensions to multiphase flow are somewhat shaky

Simulation on seismic/geologic grid:

- best possible resolution of the physical processes,
- faster model building and history matching,
- makes inversion a better instrument to find remaining oil,
- better estimation of uncertainty by running alternative models

Example: Gullfaks Field (North Sea)

Bypassed oil (4D inversion vs simulation):

Arnesen, WPC, Madrid, 2008

Difference in resolution (10 million vs 1 billion cells):

From Dogru et al., SPE 119272

Difference in resolution (10 million vs 1 billion cells):

From Dogru et al., SPE 119272

Simplified flow physics:

Can often tell a lot about the fluid movement. "Full physics" is typically only required towards the end of a workflow

Simplified flow physics:

Can often tell a lot about the fluid movement. "Full physics" is typically only required towards the end of a workflow

Operator splitting:

- fully coupled solution is slow..
- subequations often have different time scales
- splitting opens up for tailor-made methods

Simplified flow physics:

Can often tell a lot about the fluid movement. "Full physics" is typically only required towards the end of a workflow

Operator splitting:

- fully coupled solution is slow..
- subequations often have different time scales
- splitting opens up for tailor-made methods

Use of sparsity / (multiscale) structure:

- effects resolved on different scales
- small changes from one step to next
- small changes from one simulation to next

From Upscaling to Multiscale Pressure Solvers

SINTEF

Multiscale method:

Applied Mathematics

From Upscaling to Multiscale Pressure Solvers

Standard upscaling:

Multiscale method:

Applied Mathematics

1) Automated coarsening: uniform partition in index space for corner-point grids

1) Automated coarsening: uniform partition in index space for corner-point grids

2) Detect all adjacent blocks

1) Automated coarsening: uniform partition in index space for corner-point grids

3) Compute basis functions

$$\nabla \cdot \psi_{ij} = \begin{cases} w_i(x), \\ -w_j(x), \end{cases}$$
 for all pairs of blocks

2) Detect all adjacent blocks

() SINTEF

1) Automated coarsening: uniform partition in index space for corner-point grids

3) Compute basis functions

2) Detect all adjacent blocks

4) Block in coarse grid: component for building global solution

🕥 SINTEF

• More flexible wrt grids than standard upscaling methods: automatic coarsening

- More flexible wrt grids than standard upscaling methods: automatic coarsening
- Reuse of computations, key to computational efficiency

Operations vs. upscaling factor:

Inhouse code from 2005: Multiscale: 2 min and 20 sec Multigrid: 8 min and 36 sec

() SINTEF

Applied Mathematics

- More flexible wrt grids than standard upscaling methods: automatic coarsening
- Reuse of computations, key to computational efficiency
- Natural (elliptic) parallelism:
 - giga-cell simulations
 - multicore and heterogeneous computing

- More flexible wrt grids than standard upscaling methods: automatic coarsening
- Reuse of computations, key to computational efficiency
- Natural (elliptic) parallelism:
 - giga-cell simulations
 - multicore and heterogeneous computing
- Fine-scale velocity different grid for flow and transport dynamical adaptivity

- More flexible wrt grids than standard upscaling methods: automatic coarsening
- Reuse of computations, key to computational efficiency
- Natural (elliptic) parallelism:
 - giga-cell simulations
 - multicore and heterogeneous computing
- Fine-scale velocity —> different grid for flow and transport —> dynamical adaptivity

Flow-based gridding:

with and without dynamic Cartesian refinement

Research by: Vera Louise Hauge, Shell scholarship

- More flexible wrt grids than standard upscaling methods: automatic coarsening
- Reuse of computations, key to computational efficiency
- Natural (elliptic) parallelism:
 - giga-cell simulations
 - multicore and heterogeneous computing
- Fine-scale velocity different grid for flow and transport dynamical adaptivity
- Method for model reduction:
 - adjoint simulations → approximate gradients
 - ensemble simulations with representative basis functions

Reservoir geometry from a Norwegian Sea field

🕥 SINTEF

Applied Mathematics

- More flexible wrt grids than standard upscaling methods: automatic coarsening
- Reuse of computations, key to computational efficiency
- Natural (elliptic) parallelism:
 - giga-cell simulations
 - multicore and heterogeneous computing
- Fine-scale velocity different grid for flow and transport dynamical adaptivity
- Method for model reduction:
 - adjoint simulations → approximate gradients
 - ensemble simulations with representative basis functions

History matching 1 million cells:

7 years: 32 injectors, 69 producers

Generalized travel-time inversion + multiscale: 7 forward simulations, 6 inversions

	CPU-time (wall clock)			
Solver	Total	Pres.	Transp.	
Multigrid	39 min	30 min	5 min	
Multiscale	17 min	7 min	6 min	

- More flexible wrt grids than standard upscaling methods: automatic coarsening
- Reuse of computations, key to computational efficiency
- Natural (elliptic) parallelism:
 - giga-cell simulations
 - multicore and heterogeneous computing
- Fine-scale velocity different grid for flow and transport dynamical adaptivity
- Method for model reduction:
 - adjoint simulations → approximate gradients
 - ensemble simulations with representative basis functions
- Multiphysics applications

Stokes-Brinkmann:

How well do these methods handle complex physics?

- No fully-implicit formulation available
- Compressibility, gravity, $\ldots \longrightarrow$ correction functions
- \bullet Strong coupling \longrightarrow more iterations and updates of basis and correction functions
- To force residual to zero, multiscale methods start to look like multigrid/domain decomposition
- Not yet applied to compositional/thermal/...

Other issues:

- How to choose good coarse grids for unstructured grids?
- Need for global information or iterative procedures?
- A posteriori error analysis (resolution or fine-scale junk)?
- More than two levels in hierarchical grid?
- How to include pore-scale models?

Example: Fracture Corridors

() SINTEF

Applied Mathematics

Example: SPE10 with Fracture Corridors

() SINTEF

Applied Mathematics

Example: SPE10 with Fracture Corridors

- Streamline methods
 - intuitive visualization + new data
 - subscale resolution
 - good scaling, known to be efficient

Applied Mathematics

• Streamline methods

- intuitive visualization + new data
- subscale resolution
- good scaling, known to be efficient

Time-of-flight (timelines):

• Streamline methods

() SINTEF

- intuitive visualization + new data
- subscale resolution
- good scaling, known to be efficient

Applied Mathematics

- Streamline methods
 - intuitive visualization + new data
 - subscale resolution
 - good scaling, known to be efficient
- Optimal ordering
 - same assumptions as for streamlines
 - utilize causality $\longrightarrow \mathcal{O}(n)$ algorithm, cell-by-cell solution
 - local control over (non)linear iterations

Topological sorting

- Streamline methods
 - intuitive visualization + new data
 - subscale resolution
 - good scaling, known to be efficient

• Optimal ordering

- same assumptions as for streamlines
- utilize causality $\longrightarrow \mathcal{O}(n)$ algorithm, cell-by-cell solution
- local control over (non)linear iterations

Local iterations:

Johansen formation: 27437 active cells

Global vs local Newton-Raphson solver

Δt	global		local	
days	time	iter	time (sec)	iter
125	2.26	12.69	0.044	0.93
250	2.35	12.62	0.047	1.10
500	2.38	13.25	0.042	1.41
1000	2.50	13.50	0.042	1.99

- Streamline methods
 - intuitive visualization + new data
 - subscale resolution
 - good scaling, known to be efficient
- Optimal ordering
 - same assumptions as for streamlines
 - utilize causality $\longrightarrow \mathcal{O}(n)$ algorithm, cell-by-cell solution
 - local control over (non)linear iterations
- Flow-based coarsening
 - agglomeration of cells → simple and flexible coarsening
 - hybrid griding schemes
 - heterogeneous multiscale method?
 - efficient model reduction

Cartesian grid:

Triangular grids:

🕥 SINTEF

Applied Mathematics

- Streamline methods
 - intuitive visualization + new data
 - subscale resolution
 - good scaling, known to be efficient
- Optimal ordering
 - same assumptions as for streamlines
 - utilize causality $\longrightarrow \mathcal{O}(n)$ algorithm, cell-by-cell solution
 - local control over (non)linear iterations

Flow-based coarsening

- agglomeration of cells → simple and flexible coarsening
- hybrid griding schemes
- heterogeneous multiscale method?
- efficient model reduction

Different partitioning:

Uniform coarsening + Cartesian/NUC refinement

- Streamline methods
 - intuitive visualization + new data
 - subscale resolution
 - good scaling, known to be efficient
- Optimal ordering
 - same assumptions as for streamlines
 - utilize causality $\longrightarrow \mathcal{O}(n)$ algorithm, cell-by-cell solution
 - local control over (non)linear iterations

Flow-based coarsening

- agglomeration of cells → simple and flexible coarsening
- hybrid griding schemes
- heterogeneous multiscale method?
- efficient model reduction

Model reduction by coarsening:

SINTEF

Keys to enable fast simulation on seismic/geological grids:

- Simplified physics
- Operator splitting
- Sparsity / (multiscale) structure

In the future: fit-for-purpose rather than one-simulator-solves-all..?

Current and Future Research

Geological representation

Applied Mathematics