Flow-Based Coarsening for Multiscale Simulation of Transport in Porous Media

Knut-Andreas Lie, SINTEF, Norway

Workshop on Averaging, Upscaling, and New Theories in Porous Media Flow and Transport Bergen, October 14-15, 2010

Generally:

Methods that incorporate fine scale information into a set of coarse scale equations in a way which is consistent with the local property of the differential operator

Herein:

Multiscale pressure solver (upscaling + downscaling in one step)

$$\nabla \cdot \vec{v} = q, \qquad \vec{v} = -\lambda(S)\mathbf{K}\nabla p$$

+ Transport solver (on fine, intermediate, or coarse grid)

$$\phi \frac{\partial S}{\partial t} + \nabla \Big(\vec{v} f(S) \Big) = q$$

= Multiscale simulation of models with higher detail

What is multiscale simulation?

₽

Flow field with subresolution:

Local flow problems:

Flow solutions \rightarrow basis functions:

What is multiscale simulation?

What can you do with it?

Example 1: Model 2 of SPE 10

Inhouse code from 2005 (TPFA): multiscale: 2 min and 20 sec multigrid: 8 min and 36 sec

Matlab/C solver (2010): ms-mimetic: 5–6 min

Example 2: History matching

7 years: 32 injectors, 69 producers, 1 mill cells

Generalized travel-time inversion + multiscale: 7 forward simulations, 6 inversions

	CPU-time (wall clock)						
Solver	Total	Pres.	Transp.				
Multigrid	39 min	30 min	5 min				
Multiscale	17 min	7 min	6 min				

Example 3: Rate optimization

Reservoir geometry from a Norwegian Sea field

Capabilities:

- ✓ Incompressible (two-phase) flow
- $\checkmark\,$ Cartesian / unstructured grids
- $\checkmark~$ Realistic flow physics \Rightarrow iterations
 - Correction functions + smoothing
 - Residual formulation + domain decomposition
- $\checkmark \ \ \mathsf{Pointwise} \ \mathsf{accuracy} \Rightarrow \mathsf{iterations}$

Capabilities:

- ✓ Incompressible (two-phase) flow
- ✓ Cartesian / unstructured grids
- $\checkmark\,$ Realistic flow physics \Rightarrow iterations
 - Correction functions + smoothing
 - Residual formulation + domain decomposition
- ✓ Pointwise accuracy ⇒ iterations

Not yet there:

- Compressible three-phase black-oil + non-Cartesian grids
- Fully implicit formulation
- Parallelization
- Compositional, thermal, ...
- Efficient and robust transport solvers

Goal:

Given the ability to model velocity on geomodels and transport on coarse grids: Find a suitable coarse grid that best resolves fluid transport and minimizes loss of accuracy.

Formulated as the minimization of two measures:

- the projection error between fine and coarse grid
- 2 the *evolution error* on the coarse grid

Difficult to formulate a practical and well-posed minimization problem for optimal coarsening \longrightarrow ad hoc algorithms

Amalgamation of cells:

- ▶ coarse grid represented as partition vector: cell c_i in the fine grid is in coarse block B_j if p_i = j
- coarsening process steered by a set of admissible and feasible amalgamation directions

50×50 lognormal permeability:

regular: 25 blocks

nonuniform: 26 blocks

Motiviation: layered reservoir

Permeability and velocity

Time-of-flight

Partition

Formulated using a set of:

sources create a partition vector based on grid topology, geometry, flow-based indicator functions, error estimates, or expert knowledge supplied by the user, thereby introducing the feasible amalgamation directions

filters take a set of partition vectors as input and create a new partition as output, by

- combining/intersecting different partitions
- performing sanity checks, ensuring connected partitions etc
- modifying partition by merging small blocks or splitting large blocks

Aarnes, Efendiev & Hauge:

Use flow velocities to make a nonuniform grid in which each coarse block admits approximately the same total flow.

Partition: 304 blocks

Merging: 29 blocks

Refinement: 47 blocks

Merging: 39 blocks

Example: reservoir model from Norwegian Sea

10 / 25

Underlying principles:

Minimize heterogeneity of flow field inside each block

$$\min_{B_j} \left(\sum_{p_i=j} |I_1(c_i) - I_1(B_j)|^p |c_i| \right)^{\frac{1}{p}}, \qquad 1 \le p \le \infty,$$

Equilibrate indicator values over grid blocks

$$\min\left(\sum_{j=1}^{N} |I_2(B_j) - \bar{I}_2(\Omega)|^p |B_j|\right)^{\frac{1}{p}}, \qquad 1 \le p \le \infty,$$

Block size within prescribed lower and upper bounds

Amalgamation: admissible directions (neighbourship)

Example: extended neighbourship

Structured grid:

Example: extended neighbourship

Triangular grid:

Example: restricted neighbourship (topology)

 $\begin{array}{ll} \text{Upper row:} & \mathcal{N}(c_{ij}) = \{c_{i,j-1},c_{i,j+1}\} \\ \text{Lower row:} & \mathcal{N}(c_{ij}) = \{c_{i,j\pm1},c_{i\pm1,j},c_{i\pm1,j\pm1}\} \end{array}$

Example: restricted neighbourship (facies)

Constraining to facies / saturation regions:

- useful to preserve heterogeneity
- useful to avoid upscaling k_r and p_c curves

Example: restricted neighbourship (saturation regions)

Realization from SAIGUP study, coarsening within six different saturation regions

Example: restricted neighbourship (faults)

Amalgamation: feasible directions (indicators)

Example: flow-based indicators

Example: flow-based indicators

General observations:

...

- Time-of-flight is a better indicator than velocity
- Velocity is a better indicator than vorticity
- Vorticity is a better indicator than permeability
- However, for smooth heterogeneities, the indicators tend to overestimate the importance of flow.

Example: hybrid methods

Velocity + Cartesian partition:

Time-of-flight + Cartesian partition:

Satnum + velocity + Cartesian:

Example: hybrid methods

Adapting to barriers:

Coarse-grid discretisation

Bi-directional fluxes (upwind on fine scale):

$$\begin{split} S_{\ell}^{n+1} &= S_{\ell}^n - \frac{\Delta t}{\phi_{\ell}|B_{\ell}|} \Big[f(S_{\ell}^{n+1}) \sum_{\partial B_{\ell}} \max(v_{ij}, 0) \\ &- \sum_{k \neq \ell} \Bigl(f(S_{k}^{n+1}) \sum_{\Gamma_{k\ell}} \min(v_{ij}, 0) \Bigr) \Big] \end{split}$$

This gives a centred scheme on the coarse scale

Net fluxes:

$$\begin{split} S_{\ell}^{n+1} &= S_{\ell}^{n} - \frac{\Delta t}{\phi_{\ell}|B_{\ell}|} \sum_{k \neq \ell} \max\Bigl(f(S_{\ell}^{n+1}) \sum_{\Gamma_{k\ell}} v_{ij}, \\ &- f(S_{k}^{n+1}) \sum_{\Gamma_{k\ell}} v_{ij}\Bigr). \end{split}$$

This gives an upwind scheme on the coarse scale

Coarse-grid discretisation: numerical diffusion

Layer 37 from SPE10

Coarse-grid discretisation: matrix structure

Layer 68 from SPE10

Coarse-grid discretisation: numerical errors

	Tarbert formation			Upper Ness formation		
	NUC/Cart	NUC	Cartesian	NUC/Cart	NUC	Cartesian
$E_s(\mathcal{PRS}_f,S_f)$	0.0941	0.1042	0.0911	0.1371	0.1355	0.1772
$E_s(\mathcal{P}S_c,S_f)$	0.1910	0.2426	0.1687	0.2124	0.2243	0.2305
$E_s(S_c, \mathcal{R}S_f)$	0.1599	0.2100	0.1381	0.1522	0.1683	0.1604
$E_w(w_c,w_f)$	0.0695	0.0773	0.0701	0.0609	0.0668	0.0982
$E_s(\mathcal{P}S_c, S_f)$	0.1607	0.1875	0.1619	0.1795	0.1862	0.2191
$E_s(S_c, \mathcal{R}S_f)$	0.1237	0.1459	0.1302	0.1135	0.1225	0.1486
$E_w(w_c,w_f)$	0.0473	0.0444	0.0647	0.0237	0.0325	0.0844
# blocks	217 - 261	233 - 312	264	205 - 241	220-303	264
mean	236	275	264	222	264	264
# faces: mean	1069	1363	1090	1070	1309	1090
bi-directional fluxes		net fluxes				

Average errors over all layers of the two formations in SPE10

Supervised coarsening

Layer 37 from SPE10

Dynamical adaption

After injection of 0.1 PVI

Layer 22 from SPE10

Dynamical adaption

After injection of 0.5 PVI

Dynamical adaption

Layer 37 from SPE10

How can these methods be useful? For what purpose would you apply them?

- As robust upscaling methods?
- As alternative to upscaling and fine-scale solution?
- To provide flow simulation earlier in the modelling loop?
- ► To get 90% of the answer in 10% of the time?
- Fit-for-purpose solvers in workflows for ranking, history matching, planning, optimization, ...

Which capabilities should we try to develop?

- More complex flow physics?
- Modelling of fault/fractures?
- Multiphysics formulations?
- Automated methods with goal-oriented error control?

▶ ...

What capabilities are sufficient for the methods to be more generally adopted?

Ulitmate vision: 'truly' multiscale methods, bridging 'all' scales? Is incorporation of pore/core/facies models realistic?