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What is multiscale simulation?

Generally:

Methods that incorporate fine scale information into a set of coarse scale
equations in a way which is consistent with the local property of the
differential operator

Herein:

Multiscale pressure solver (upscaling + downscaling in one step)

∇ · ~v = q, ~v = −λ(S)K∇p

+ Transport solver (on fine, intermediate, or coarse grid)

φ
∂S

∂t
+∇

“
~vf(S)

”
= q

= Multiscale simulation of models with higher detail
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What is multiscale simulation?

Coarse partitioning: Flow field with subresolution:

⇓ ⇑
Local flow problems:

⇒

Flow solutions → basis functions:
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What is multiscale simulation?
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What can you do with it?

Example 1: Model 2 of SPE 10

60× 220× 85 cells

Inhouse code from 2005 (TPFA):

multiscale: 2 min and 20 sec
multigrid: 8 min and 36 sec

Matlab/C solver (2010):
ms-mimetic: 5–6 min

Example 2: History matching

7 years: 32 injectors, 69 producers, 1 mill cells

Generalized travel-time inversion + multiscale:
7 forward simulations, 6 inversions

CPU-time (wall clock)
Solver Total Pres. Transp.
Multigrid 39 min 30 min 5 min
Multiscale 17 min 7 min 6 min

Example 3: Rate optimization

Reservoir geometry from a Norwegian Sea field
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Oil initial
Oil optimized
Water initial
Water optimized

Forward simulations:
44 927 cells, 20 time steps, < 5 sec in Matlab
∼ 100 times speedup
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State-of-the-art

/ What is missing?

Capabilities:

X Incompressible (two-phase) flow

X Cartesian / unstructured grids

X Realistic flow physics ⇒ iterations
I Correction functions + smoothing
I Residual formulation + domain decomposition

X Pointwise accuracy ⇒ iterations

Not yet there:

I Compressible three-phase black-oil + non-Cartesian grids

I Fully implicit formulation

I Parallelization

I Compositional, thermal, . . .

I Efficient and robust transport solvers
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Transport solvers on coarse grids

Goal:

Given the ability to model velocity on geomodels and transport on
coarse grids: Find a suitable coarse grid that best resolves fluid
transport and minimizes loss of accuracy.

Formulated as the minimization of two measures:

1 the projection error between fine and coarse grid

2 the evolution error on the coarse grid

Difficult to formulate a practical and well-posed minimization
problem for optimal coarsening −→ ad hoc algorithms
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Coarsening by amalgamation

Amalgamation of cells:

I coarse grid represented as partition vector: cell ci in the fine grid is
in coarse block Bj if pi = j

I coarsening process steered by a set of admissible and feasible
amalgamation directions

50× 50 lognormal permeability:

regular: 25 blocks nonuniform: 26 blocks isocontours [p]: 26 blocks
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Motiviation: layered reservoir

Permeability and velocity

Time−of−flight

Partition
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Heuristic minimization algorithms

Formulated using a set of:

sources
create a partition vector based on grid topology,

geometry, flow-based indicator functions, error estimates, or
expert knowledge supplied by the user, thereby introducing
the feasible amalgamation directions

filters
take a set of partition vectors as input and create a

new partition as output, by
I combining/intersecting different partitions
I performing sanity checks, ensuring connected partitions etc
I modifying partition by merging small blocks or splitting large

blocks
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Non-uniform coarsening

Aarnes, Efendiev & Hauge:

Use flow velocities to make a nonuniform grid in which each coarse block
admits approximately the same total flow.

log(|~v|) sanity merge refine merge NUC grid

Partition: 304 blocks Merging: 29 blocks Refinement: 47 blocks Merging: 39 blocks
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Example: reservoir model from Norwegian Sea
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1581 blocks
854 blocks
450 blocks
239 blocks
119 blocks
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Abstracting the NUC algorithm

Underlying principles:

I Minimize heterogeneity of flow field inside each block

min
Bj

“X
pi=j

|I1(ci)− I1(Bj)|p |ci|
” 1

p
, 1 ≤ p ≤ ∞,

I Equilibrate indicator values over grid blocks

min
“ NX
j=1

|I2(Bj)− Ī2(Ω)|p |Bj |
” 1

p
, 1 ≤ p ≤ ∞,

I Block size within prescribed lower and upper bounds
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Amalgamation: admissible directions (neighbourship)

Admissible
directions

Topology

face
neighbours

edge
neighbours

point
neighbours

...

Geometry

distance

Cell
constraints

facies /
rock types

relperm /
pc regions

user
supplied

Face
constraints

faults

horizons

user
supplied
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Example: extended neighbourship

Structured grid:

5-neighborhood 9-neighborhood
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Example: extended neighbourship

Triangular grid:

face neighbors extended
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Example: restricted neighbourship (topology)

Upper row: N (cij) = {ci,j−1, ci,j+1}
Lower row: N (cij) = {ci,j±1, ci±1,j , ci±1,j±1}
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Example: restricted neighbourship (facies)

Facies distribution Cartesian PEBI

Constraining to facies / saturation regions:

I useful to preserve heterogeneity

I useful to avoid upscaling kr and pc curves
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Example: restricted neighbourship (saturation regions)

facies facies separated

facies # 3 facies #6

Realization from SAIGUP study, coarsening within six different saturation regions
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Example: restricted neighbourship (faults)

unconstrained: 26 blocks constrained: 31 blocks
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Amalgamation: feasible directions (indicators)

Feasible directions Cell

error
estimates

a
posteriori

a priori
sensitivity

...

ad hoc
flow-based

time of
flight

velocity

vorticity

gradients

...

a priori

permeability

porosityvolume

...

Face

fluxvelocity

transmissi-
bilities

multipliers ...
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Example: flow-based indicators

indicator fine-scale saturation permeability

ve
lo

ci
ty

vo
rt

ic
it

y

16 / 25



Example: flow-based indicators

reference solution time-of-flight grid METIS grid
11 864 cells 127 blocks 175 blocks

General observations:

I Time-of-flight is a better indicator than velocity

I Velocity is a better indicator than vorticity

I Vorticity is a better indicator than permeability

I . . .

However, for smooth heterogeneities, the indicators tend to overestimate the
importance of flow.
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Example: hybrid methods

Velocity + Cartesian partition:

n×m

intersect merge refine

log |~v|

Time-of-flight + Cartesian partition:

n×m

intersect merge refine

− log(ττr)
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Example: hybrid methods

Satnum + velocity + Cartesian:

n×m

satnum intersect merge refine

log |~v|
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Example: hybrid methods

Adapting to barriers:

n×m

K > Kb? intersect merge refine

n×m

K > Kb? intersect merge refine

-log(ττr)
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Coarse-grid discretisation

Bi-directional fluxes (upwind on fine scale):

S
n+1
` = S

n
` −

∆t

φ`|B`|

h
f(S

n+1
` )

X
∂B`

max(vij , 0)

−
X
k 6=`

“
f(S

n+1
k )

X
Γk`

min(vij , 0)
”i
.

This gives a centred scheme on the coarse scale

Net fluxes:

S
n+1
` = S

n
` −

∆t

φ`|B`|

X
k 6=`

max
“
f(S

n+1
` )

X
Γk`

vij ,

−f(S
n+1
k )

X
Γk`

vij

”
.

This gives an upwind scheme on the coarse scale

19 / 25



Coarse-grid discretisation: numerical diffusion

reference net fluxes bi-directional fluxes

Layer 37 from SPE10
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Coarse-grid discretisation: matrix structure
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Coarse-grid discretisation: numerical errors

Tarbert formation Upper Ness formation

NUC/Cart NUC Cartesian NUC/Cart NUC Cartesian

Es(PRSf , Sf ) 0.0941 0.1042 0.0911 0.1371 0.1355 0.1772

Es(PSc, Sf ) 0.1910 0.2426 0.1687 0.2124 0.2243 0.2305

Es(Sc,RSf ) 0.1599 0.2100 0.1381 0.1522 0.1683 0.1604

Ew(wc, wf ) 0.0695 0.0773 0.0701 0.0609 0.0668 0.0982

Es(PSc, Sf ) 0.1607 0.1875 0.1619 0.1795 0.1862 0.2191

Es(Sc,RSf ) 0.1237 0.1459 0.1302 0.1135 0.1225 0.1486

Ew(wc, wf ) 0.0473 0.0444 0.0647 0.0237 0.0325 0.0844

# blocks 217–261 233–312 264 205–241 220–303 264

mean 236 275 264 222 264 264

# faces: mean 1069 1363 1090 1070 1309 1090

bi-directional fluxes net fluxes

Average errors over all layers of the two formations in SPE10
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Supervised coarsening

Layer 37 from SPE10
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Dynamical adaption

After injection of 0.1 PVI

adaptive coarse fine grid

Layer 22 from SPE10
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Dynamical adaption

After injection of 0.5 PVI

adaptive coarse fine grid

Layer 22 from SPE10
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Dynamical adaption
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Adapted grid
Coarse grid
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Layer 37 from SPE10

24 / 25



Questions

How can these methods be useful? For what purpose would you
apply them?

I As robust upscaling methods?

I As alternative to upscaling and fine-scale solution?

I To provide flow simulation earlier in the modelling loop?

I To get 90% of the answer in 10% of the time?

I Fit-for-purpose solvers in workflows for ranking, history matching,
planning, optimization, . . .

25 / 25



Questions

Which capabilities should we try to develop?
I More complex flow physics?

I Modelling of fault/fractures?

I Multiphysics formulations?

I Automated methods with goal-oriented error control?

I . . .

What capabilities are sufficient for the methods to be more
generally adopted?
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Questions

Ulitmate vision: ’truly’ multiscale methods, bridging ’all’ scales?
Is incorporation of pore/core/facies models realistic?
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