A Driller's View of the Cross-over between Aviation and Drilling

John Thorogood

Introduction

- Parallels between Aviation and Drilling
 - Evolution of Automation and relevant Principles
 - Three air accident examples and lessons
- Aviation, Process Control and Drilling
 - Drilling decision-making cycle and timescales
 - · Examples of existing automation in drilling
 - Emerging Technologies and questions to ask
- Addressing the Human Factor
 - Problems for Drillers: operational discipline
 - · Non-technical skills and training

Premises of Automation in Aviation

- The pilot must be actively involved in the process being controlled
- The pilot must be adequately informed about what the system is doing
- Operators must be able to monitor and interrogate the functioning of the automation
- Behaviour of automated systems must be predictable
- Automated systems must monitor the operators by providing alerts if anomalous conditions are detected

М1

AA965, Cali, Colombia, Dec 1995

- Sequence of events
 - Approach runway changed midway through the descent
 - Procedure start point already passed, incorrect beacon frequency selected
 - Crew disorientation and breakdown in procedures
 - 159 pax and crew killed, 4 people and a dog survived
- Lessons for Drilling
 - Reactions to unexpected events, sense-making
 - Operating complex systems under stress
 - Situation awareness
 - Discipline in control and communication

M2

US1549, Hudson River, Jan 2009

- Sequence of events
 - Collided with flock of geese, near total power loss
 - Automated flight controls prevented major upset
 - Fortuitous decision to start up auxiliary power unit
 - Exemplary crew discipline lead to successful ditching
- Lessons for Drilling
 - Automated controls could not be over-ridden
 - Automation enabled the crew to focus on the problem
 - Skilled improvisation ensured computerised controls continued to function
 - Experience, discipline and adherence to standard procedures

Observations about AF447

- Characteristics of the event:
 - Highly automated flight deck
 - Sudden onset, major surprise
 - Unusual situation
 - Multiple ambiguous signals
- · Lessons for Drilling
 - Response of systems to rare events
 - Complexity of interfaces and sense-making
 - Situation awareness and basic understanding of flying

Aviation, Process Control & Drilling

- Aviation and Process Control:
 - Processes are comprehensively instrumented
 - Steady state is the norm
 - Systems are designed and behave according to defined laws
 - Systems are fully integrated
 - Operational protocols standardised worldwide (IACO)
- Drilling
 - Downhole and operational environment subject to major uncertainties
 - Operations are dynamic, rarely steady state
 - Limited integration of systems and regular changes in suppliers

Global Consultant

 Wide diversity in management styles, control of work and command protocols

Current Automation in Drilling

- Elementary Systems
 - Auto-drillers, rotary steerable systems
- MPD Choke Control
 - Increased precision, enhanced kick detection
 - Models used as aids, new protocols required
- ROP Optimisation
 - Advanced algorithms, direct control of rig
 - Reduces driller workload, improves oversight
- Dynamic Positioning Systems
 - Considerable complexity, safety-critical, high integrity
 - Internationally formalised protocols, simulators, log books

Emerging Technologies?

- Envelope protection
 - Pump start-up & shut down
 - Swab-surge limitations
- Automated choke control in primary well control
- Intelligent Alarms, case based systems
- Automated Decision Support
- Increasing complexity will create different issues:
 - Sensor integrity and redundancy
 - Database initialisation and maintenance
 - Opacity of decision-making
 - Authority / responsibility conflicts

Decisions about Automation

- What decision is the function automating?
- Whose responsibility is the decision?
- Safety-critical issues?
- Is delegation to a machine appropriate?
 - Authority vs responsibility

Conclusions around Automation

- Automation:
 - brings benefits and complexity
 - is more than just computers, it involves people and organisations
- Automation of critical time-sensitive functions:
 - provides more consistency and reliability than an operator
 - reduces cognitive demands, enables increased situation awareness
- Automated systems for control and decision-support must keep authority and responsibility tightly linked
- Advanced automation and decision support will place increased demands on education, training, assessment and ongoing proficiency
- Automation of safety-critical systems will demand tight control of design, manufacturing, testing and user operation

Drilling Global Consultant

Consultant

M5

Addressing the Human Factor in Drilling

- Where are we?
 - HF tacitly acknowledged as factor in major incidents
 - Industry focused on application to well control
 - Blinkered approach presents a major risk
- Reality check:
 - Effects of cognitive bias on decision-making not addressed in routine incident analysis
 - Examples can be seen in events in every-day operations
 - "Explanations" involving superficial attributions prevail
 - Lack of awareness of underlying psychological issues, chronic unease and weak signals
 - Non-technical skills must be visible in routine operations in the workplace and chain of command

M6

Crew Resource Management in Drilling

- Situation in Aviation:
 - Well established operational protocols
 - Training, licensing and operational oversight impose strict discipline
 - Demonstrated competence in non-technical skills and multi-crew coordination are required skills
- Application to Drilling
 - Drillers will require much greater formality in the way they approach their jobs
 - Development of CRM in Drilling will require deep discipline knowledge
 - Non-technical skills must be examined and assessed as part of competency assurance

 Drilling

CRM Requires a Formal Context

- 1. How Drilling Programmes are written
- 2. The process for generating Written Work Instructions
- 3. Procedures for monitoring the operation
- 4. How deviations and changes are handled
- 5. Decision-making Procedure
- 6. The elements of Operational Discipline
- 7. Operational doctrine and rules
- 8. Competency, Training and Assessment of the people

Global Consultant

How do you train Non-Technical Skills?

- Teach the basic theoretical concepts:
 - Impact of biases on thinking process and decision making
 - Non-technical skills as a way to counter the biases
 - Threat and Error Management to institutionalise chronic unease
- Practical & theoretical in combination
 - Simulator-based sessions to practise and apply new information
- Assessment of theory and practice
 - Directed feedback and debriefing
- Coaching continued into the workplace (Aviation: LOFT)
 - Supervisors trained in the skills and encouraged to include in briefings and debriefings
- Recurrent training and assessment
 - No 'magic wand'; continuously reinforced throughout the workplace and working life
 Global

Consultant

Conclusions around CRM

- 1. Address psychological and cognitive aspects to detect weak signals and train to respond strongly to them
- 2. Assure competence in non-technical skills to overcome psychological traps
- 3. Institutionalise chronic unease with Threat and Error Management techniques in the chain of command
- 4. Codify procedures for executing and monitoring well operations, making decisions, and managing change within a Standardised Operational framework.
- 5. Adopt a high level of operational discipline in the execution of workplace activities

 Drilling
 Global

SPE/IADC 163489 - Operational Control and Managing Change - Thorogo

Questions?

Acknowledgements:

My co-author and collaborator in all of this work: Margaret Crichton of People Factor Consultants Ltd, Aberdeen.

In addition, contributors to the papers we have written: Charles Cowley, Brian Crichton, George Galloway, John Gidley and Lisa Reed P Mathieson, B McIntyre, R Smith, P Sproul, S Salter, P Johnson, J Boys, M Ydalus

Pafarancas

- SPE 151257: Automation in Drilling
- SPE 163489: Operational Control and Managing Change
- SPE 167967: Threat and Error Management
- SPE 167047: Case Study of Weak Signals

Consultant