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• As power systems worldwide shift their generation resource mix from 

conventional power plants to a high proportion of renewable resources, new 

issues arise for ensuring stable system operation. 

– Traditionally, spinning conventional generators have provided system synchronous 

inertia.

– With increasing penetration of asynchronous resources, inertia declines.

• Low inertia grid could be potentially at a risk of experiencing excessive rate of 

change of frequency (ROCOF) after a contingency. 

– A high ROCOF may initiate tripping of other generators 

• Network frequency response may become more vulnerable, and system may be 

subjected to significant under frequency load shedding or at a risk of blackout.

Introduction
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Illustration of system frequency response

Ref 1: EPRI, 2019
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Illustration of System Inertia and RoCoF

Ref 2: EPRI, 2019
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• System operators use layers of frequency control measures to ensure stability of 

the system. 

• In ordinary operation, operators accomplish small-scale steady-state regulation 

in response to small load changes using automatic and manual frequency 

restoration reserves (FRR). 

• In contingencies, the system operator deploys frequency containment reserves 

(FCR). In larger systems, these are usually distinct from steady-state frequency 

control services. 

• By managing the rate of change of frequency, the system operator seeks to:

– Limit load shedding due to large frequency deviations

– Avoid cascading outages that can lead to a blackout, if at all possible

• At each level, system inertia plays a role in managing stability. 

Power System Stability with Low Intertia
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• With lower inertia, the frequency excursions will be increased, and adequate component 

models must be available

• With the increasing penetration of converter-based interfaces of loads and sources there 

will be: 

– Large span in time-constants for the simulation processes

– Need more detailed component models

– More of the system and component protection may be activated

• The analysis becomes challenging, and the conclusions will depend on the accuracy of the 

models

• A proper tuning of the different controllers and dynamic performance will be challenging

• It is experienced that different tools may give differences in response for larger 

disturbances

• Tools are needed to assess the system performance and to support the tuning of 

controllers of components

Dynamic analysis



Large-scale and converter-based power system

Numerical methods

Efficient stiff solverGear’s method

Phasor representation

Detailed representation

Phasor representation

Adaptive step size

A-matrix extraction 

Post.Doc Jalal Khodaparast
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Unified stability analysis



Gear’s 
method:
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Gear’s method:

UNIFIED STABILITY  

ANALYSIS 

1) Detection of transient instability

2) Extraction of small-signal indices
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1-Modal analysis

LTV system: 

Stability Analysis
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A-matrix extraction

Solve Riccati equation

Mode-vector calculation



1-Modal analysis LTV system
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Development stages
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• Largest contingency

• RoCoF Protection Relay Setting (0.1 Hz – 1 Hz)

– Installed on DER, trips when rate of change exceed setting

• Under-Frequency Events and Conventional Generators

– Lack of RoCoF-relay may in low inertia systems bring generators into 

untested modes of operation

• Under-Frequency Load Shedding Setpoints

– Last sort of action but too low they will define the minimum frequency

– Too high will cause wide-spread load shedding

Factors Relating Inertia, RoCoF, and Frequency 

Nadir (1)
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• Fast Frequency Response from Inverter-Based Resources

– inverter-based resources can be programmed to quickly inject power, which 
serves a similar but not identical function to inertia. 

– The power injection can help slow the RoCoF, help stabilize the system, and 
avoid dropping loads

• Frequency Containment Reserve (FCR)

– More units online may reduce the efficiency

• The Contribution of Load and Energy Storage

– Load adjustment can provide quick frequency response without requiring 
additional inertia on the system.

• System Protection Device Sensitivity

Factors Relating Inertia, RoCoF, and Frequency 

Nadir (2)
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Name Nordic System Great Brittain

Under Frequency Load 

Shedding (UFLS)

48.85 Hz 48.8 Hz

Rate of Change of 

Frequency (RoCoF)

0.5 Hz/s 0.5 Hz/s

Largest Contingency 1.4 GW 1.25 GW

Peak Demand 72 GW 60 GW

Inertia Floor 125 GWs 135 GWs

System characteristics
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• Assessing the need for Intertia

– Accurate models of the system

– Careful dynamic studies of current and future scenarios

• Main groups of Inertia and FFR providers:

– Synchronous Solutions

– Asynchronous Solutions: Synthetic Inertia and FFR

Low Intertia Operation
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• Synchronously  connected generators

– Most direct solution to impose a minimum system inertia level 

• Pumped hydro-electric storage

• Compressed air energy storage

• Synchronous flywheel storage

• Synchronous condensers

– Much replaced by STATCOM and SVC

– Increasing interest again

Synchronous Solutions
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• Exploit the inverter controls of power electronics to use 

asynchronous or DC resources to provide rapid power injections in 

response to events.

• Fast frequency response can come from: 

– wind 

– PV plants, 

– Battery energy storage, systems, 

– HVDC interconnectors

– Inverter-based resources

Asynchronous Solutions
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• Detection of RoCoF

– RoCoF needed to asynchronously-connected synthetic inertia solutions

– Estimation of RoCoF has an inherent time delay (time window)

– Concerns about  potential delay before response activation

• Inertia Emulation: A Different Response than Synchronous Machines

– Operating condition of for example wind-turbine will influence the response

– Acceleration after deceleration

• “De-Loading” Renewable Resources

– A possibility to operate them de-loaded to have some margin

– Not the best approach

Asynchronous Solutions - Issues
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Frequency service capabilities

Ref 1: EPRI, 2019
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• As system inertia decreases and the system is becoming more 

complex, transmission system operators face new challenges in 

planning, operating, and protecting transmission systems.

• The industry needs new analytical tools for simulation, coordination, 

tuning of controllers and decision support, as well as high-quality 

real-world data on the effects of reduced system inertia during 

disturbances.

• In the meantime, new techniques for supporting system inertia 

require study to establish their value and effectiveness in 

supplementing or replacing synchronous inertia – still there is a long 

way to go

Conclusions
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