

HVDC-Pro dissemination workshop

Inertia management in France and Europe, a TSO perspective about future trends and some ongoing research

28/4/2022

Thibault PREVOST thibault.prevost@rte-france.com

Copyright RTE – 2021. Ce document est la propriété de RTE. Toute communication, reproduction, publication même partielle est interdite sauf autorisation écrite du Gestionnaire du Réseau de Transport d'Électricité (RTE)

Inertia in France and Europe

OSMOSE WP3

French system Evolution

Scénario M23 : énergies renouvelables grands parcs

---- Sources de production d'électricité

For this scenario with mainly inverter based generation we see that the inertia level will reach any level. From moderate to very low inertia.

There will also be a need to address the fast change of inertia from day to day.

Inertia for M2

French system Evolution

Scénario M23 : énergies renouvelables grands parcs

---- Sources de production d'électricité

For this scenario with mainly inverter based generation we see that the inertia level will reach any level. From moderate to very low inertia.

There will also be a need to address the fast change of inertia from day to day.

Inertia for M2

Rie

Scénario N2 : Énergies renouvelables + nouveau nucléaire 2

Sources de production d'électricité

French system Evolution

In the case with nuclear generation, the inertia level is higher.

BUT, there are still time of the year with very low inertia level.

Inertia Evolution

NT-National Transition; DE-Distributed Energy; GA-Global Ambition

Scenarios description available at: <u>https://www.entsos-</u> <u>tyndp2020-scenarios.eu/</u>

Rte HVDC Pro workshop

https://eepublicdownloads.blob.core.windows.net/public-cdn-container/tyndpdocuments/TYNDP2020/Foropinion/TYNDP2020_Insight_Report_Inertia.pdf

Inertia in Europe

A specific TF has been created in ENTSOE to address inertia issue:

Focus on system split

https://eepublicdownloads.azureedge.net/clean-documents/Publications/ENTSO-

e HVDC Pro workshop

E%20general%20publications/211203_Long_term_frequency_stability_scenarios_for_publication.pdf

Inertia and RoCoF issues :

One side of a bigger change: the operation of the grid with few synchronous machines

Have a look at DS3 study in Eirgrid and its new ancillary services, allowing for 70% IBR penetration

UK has grid code with grid forming capabilities embedded.

ENTSOE

Grid-Forming Capabilities: Towards System Level Integration

31 March 2021

- Grid-forming capabilities need to be defined in connection network codes (CNCs) to enable harmonised solutions
- Developing sufficient conditions for grid-forming capabilities via national level ancillary services
- HVDC, FACTs and SCs are the immediate candidates to explore the development of the grid-forming capabilities
- Storage and sector coupling facilities should be further explored in order to unlock their full potential of providing grid-forming capabilities

ENTSOE is presently working on the implementation of GFM in the connection code.

RDIC is working on the roadmap for future stability management.

WP3 : Demonstration of grid forming control by energy storage systems

Thibault PREVOST & Carmen Cardozo (RTE)

The project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 773406.

Context & backgrounds

• Inverter-based resources (IBR) currently connected to the grid are grid following:

Context & backgrounds

• Inverter-based resources (IBR) currently connected to the grid are grid following:

- How much IBR before unstable behavior?
- WP3: Can we operate a system 100% IBR?
 - \circ Redefined system needs, and

MIGRATE

 \circ proposed various grid forming (GFM) controls

Context & backgrounds

• Inverter-based resources (IBR) currently connected to the grid are grid following:

• How much IBR before unstable behavior?

MIGRATE

- WP3: Can we operate a system 100% IBR?

 Redefined system needs, and
 proposed various grid forming (GFM) controls
- Many more now available in the literature
- 2 high power demonstration Siemens & ABB
- GC0137: Minimum Specification Required for Provision of GB Grid Forming (GBGF)

WP3 objectives

- To progress on the common understanding, on the definition of the grid forming capability.
- To demonstrate:
 - the technical feasibility of providing grid forming capability with commercially available power-electronics interfaced energy storage systems (ESS),
 - that this solution can be industrially deployed in voltage source converter (VSC) without oversizing such that it is economically viable, and
 - that their contribution to power system stability can be quantified by means of external measurements without a detailed knowledge of specific low-level controls.

Demonstrators overview

[1] D3.2 Overall specification of the demos

AC/DC	720 <u>kVA</u>
Battery Li-Titan	720 kW – 45 min
Transformer	300 V – 21 kV

AC/DC	1000 <u>kVA</u>
Battery Li-ion	500 kW – 60 min
Supercapacitors	1000 kW – 10 s
Transformer	600 V – 20 kV

WP 3 definition of grid forming capability

A GFM unit shall, within its rated power and current, be capable of self-synchronise, stand-alone and provide synchronization services.

- By definition, a GFM does not rely on specific grid conditions to synchronise. It can operate at a wide range of short-circuit ratios and inertia levels.
- **Synchronization services** include a natural/ inherent/ immediate/ undelayed deployment of synchronising power, system strength, fault current and inertial response.
- Hence, a GFM unit will maintain and help others to maintain synchronism under stressful conditions, while still complying with the general requirements applying to the specific technology.
- No overload or capacity reservation is associated to the GFM capability, neither the provision of traditional ancillary services such as primary voltage and frequency regulation.

Non-frequency ancillary services

Steady-state (minutes-hours)

Steady state voltage

control (SSVC)

Stability services (activation time <2s, variable sustained time depending on system needs seconds to minutes. Possible lower bound on activation time)

RTE-Ingeteam demo description

An fire incident during commissioning prevent this Demo to ultimately be put into service.

RTE-Ingeteam: contributions in control design

AC/DC grid forming control design

- Inclusion of a negative sequence (NS) component to the threshold virtual impedance (TVI) current limitation strategy to improve the grid forming control robustness to asymmetrical faults and define settable prioritisation between the positive and negative sequence.
- Decoupling between the synchronisation and the frequency-related services (FFR or FCR) at the AC/DC converter level (transient grid forming).

DC/DC control design

 Decoupling of the balancing and synchronisation services at device level through DC power sharing strategies: fast transients are fed by the UC, smoothing the battery power output. Energy intensive ancillary and flexibility services are provided by the battery.

OSMOSE

RTE-Ingeteam: power hardware in the loop FAT

RTE-Ingeteam PHIL FAT results

Synchronising power

RTE-Ingeteam PHIL FAT results

RTE-Ingeteam PHIL FAT results

OSMOSE

EPFL demo multiservice control framework

EPFL demo: key performance indicators

Relative Phase Angle Difference Deviation (rPADD)

$$rPADD = \left| \frac{\Delta \theta_k - \Delta \theta_0}{\Delta P_k} \right|$$

quantifying the change in the phase-to-neutral voltage angle difference $\Delta \theta_k$, measured by two PMUs installed on nodes at different voltage level of the local feeder, versus the case with null delivered active power $\Delta \theta_0$,

$$\begin{cases} \Delta \theta_k = \theta_{k,PMU1} - \theta_{k,PMU2} \\ \Delta \theta_0 = \theta_{0,PMU1} - \theta_{0,PMU2} \end{cases}$$

FPGA-based PMU

- Synchrophasor Estimation
- Enhanced Interpolated-DFT
- Accuracy in terms of 1 std deviation
 σ: 0.001 deg 18 µrad
- Frequency Error < 0.4 mHz</p>
- Reporting time 20 ms
- GPS Time synchronization (100 ns)

Relative Rate-of-Change of Frequency (rRoCoF)

$$rRoCoF = \frac{\Delta f_{pcc}/\Delta t}{\Delta P_{BESS}}$$

where:

- Δf_{pcc} is the difference between one grid frequency sample and the next at the PCC.
- ΔP_{BESS} is the once-differentiated BESS active power.
- Δt is the sampling interval.

EPFL demo results: local Effects of BESS in GFM

rPADD is computed with PMU measurements during hourly transient at night when the prosumption of the dispatchable feeder has minor variations, such that the $\Delta \theta_0 \approx$ constant.

OSMOSE

THANK YOU

- For further reading:
- https://www.osmose-h2020.eu/resource-center/

- For further questions
- <u>Thibault.prevost@rte-france.com</u>
 &
- <u>Carmen.Cardozo@rte-france.com</u>

Read more on RTE-Ingeteam Demo

- 1. Enhanced TVI for Grid Forming VSC under Unbalanced Faults. Published on Energies. Available on: <u>https://www.mdpi.com/1996-1073/14/19/6168</u>
- 2. OSMOSE WP3: Factory Acceptance Test of the grid forming demonstrator. Presented in SIW 2020. Available on: https://www.researchgate.net/publication/348818638_OSMOSE_WP3_Factory_Acceptance_Test_of_the_grid_forming_demonstrator
- 3. OSMOSE Grid-Forming performance assessment within multiservice storage connected to the transmission grid. Presented in Cigre 2020. Available on: <u>https://www.researchgate.net/publication/348818490_OSMOSE_Grid-</u> forming_performance_assessment_within_multiservice_storage_connected_to_the_transmission_grid
- 4. Upgrade of a grid-connected storage solution with grid-forming function. Presented in SIW 2019. Available on: https://www.researchgate.net/publication/337561687_Upgrade_of_a_grid-connected_storage_solution_with_grid-forming_function
- 5. Performance assessment of Synchronous Condensers vs Voltage Source Converters providing grid-forming functions. Presented in PowerTech 2021. Available on: <u>https://arxiv.org/abs/2106.03536</u>

Read more on EPFL Demo

- 1. Optimal Grid-Forming Control of Battery Energy Storage Systems Providing Multiple Services: Modeling and Experiment Validation. Submitted to PSCC 2022. Available on: <u>http://arxiv.org/abs/2110.10052</u>.
- Z. Yuan, A. Zecchino, R. Cherkaoui and M. Paolone, "Real-Time Control of Battery Energy Storage Systems to Provide Ancillary Services Considering Voltage-Dependent Capability of DC-AC Converters," in IEEE Transactions on Smart Grid, vol. 12, no. 5, pp. 4164-4175, Sept. 2021, doi: 10.1109/TSG.2021.3077696.
- A. Zecchino, Z. Yuan, F. Sossan, R. Cherkaoui, M. Paolone, Optimal provision of concurrent primary frequency and local voltage control from a BESS considering variable capability curves: Modelling and experimental assessment, Electric Power Systems Research, Volume 190, 2021, https://doi.org/10.1016/j.epsr.2020.106643.
- 4. Local Effects of Grid-Forming Converters Providing Frequency Regulation to Bulk Power Grids. Accepted by 2021 IEEE PES ISGT Asia. Available on: <u>https://arxiv.org/abs/2110.05392</u>
- 5. Y. Zuo, Z. Yuan, F. Sossan, A. Zecchino, R. Cherkaoui, M. Paolone, Performance assessment of grid-forming and grid-following converter-interfaced battery energy storage systems on frequency regulation in low-inertia power grids, Sustainable Energy, Grids and Networks, Volume 27, 2021, https://doi.org/10.1016/j.segan.2021.100496.
- 6. Y. Zuo, F. Sossan, M. Paolone, Effect of Voltage Source Converters with Electrochemical Storage Systems on Dynamics of Reduced-inertia Bulk Power Grids. Electric Power Systems Research, vVolume 189, 2020, <u>https://doi.org/10.1016/j.epsr.2020.106766</u>.
- 7. E. Namor, F. Sossan, R. Cherkaoui and M. Paolone, "Control of Battery Storage Systems for the Simultaneous Provision of Multiple Services," in IEEE Transactions on Smart Grid, vol. 10, no. 3, pp. 2799-2808, May 2019, doi: 10.1109/TSG.2018.2810781.

WP 3 proposed types of grid forming units

Depending on the provided subset of synchronisation services we propose 4 types of GFM units

WP 3 proposed types of grid forming units

Depending on the provided subset of synchronisation services we propose 4 types of GFM units

