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* Virtual inertia support from power electronic converters
* Basic concepts of "grid-forming" and "grid-following" control
* Virtual inertia by Virtual Synchronous Machines (VSMs) as grid forming control
* Virtual inertia by "grid-following" control
* Virtual inertia from "grid-forming" vs "grid-following" control
* VSM-based control under unbalanced conditions
* Strategies for negative sequence current control

* Examples of results during unbalanced conditions

* Summary and outlook
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Control of power converters in power systems

 "Grid-following" converters

* "Grid-forming"

Synchronization to the measured grid voltage
* Typically by a Phase Locked Loop (PLL)

Usually based on inner loop current control

Power control by active current component

Grid support functionality by auxiliary control loops

Stability challenges in "weak grids"
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converters

* Inherently capable of islanded operation
Power control via voltage phase angle

Challenges with voltage control in "strong grids
|

Capability for voltage and frequency control

Power-balance-based synchronization mechanism

Outer loop control sharing of active and reactive power
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Virtual Synchronous Machines for grid-forming control

First publication on Virtual Synchronous Machine (VISMA)
concept by Beck and Hesse in 2006

Internal simulation of a Synchronous Machine (SM)

e Simulated machine model provided current references used
for converter control

Main purpose: Emulate the main operational characteristics of |
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¢ Inertial dynamics |
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+ Grid forming functionality
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The first proposals had higher detailing level than necessary -
Many implementations proposed in literature

* Generally referred to as Virtual Synchronous Machines (VSMs)

VISMA Concept
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Basis for Virtual Synchronous Machine (VSM) control

* Synchronization mechanism and power control P
based on emulation of SM swing equation
* Based on torque or power balance
* Linearized power balance is simpler for VSM applications:
*
d Wy _P. D ky (wVSM wg) @,

dt T, T T

a a a

* Ensures grid synchronization and inertial
response to grid frequency variations

* Typically combined with a simple power
-frequency droop ('governor') function
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Swing equation damping for VSMs

P,

* Ideal swing equation depends on grid frequency: v
day, =p_2_&_kd (a)VSM _wg)

a T, T, T, o

* Implementation of damping has impact on dynamic P

response and steady-state operation »

* Three main options:
* Assuming a fixed grid frequency reference, w, = w” Or
* Integrated damping and droop defined by the same parameter

* Estimating the grid frequency from the voltage measurements (using PLL,
FLL etc.), wg = wpy;

* Internal estimation of the grid frequency
wg = wVSMH est(s)
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VSM with direct voltage modulation >

V,
g
* Virtual swing equation (inertia model) provides
phase angle reference Z, i
* Voltage amplitude provided by reactive power or Vs I “,
voltage control loop ("AVR") q L C
Measurement (!
* Voltage references used directly as reference for 2 Processing
PWM operation of the converter 2 W
* No explicit current control for the converter or . Reactive .
. . q Power —" ||
explicit overcurrent protection Control
) ) ] PWM Erwu >
* Simplest implementation: . L Inertia o
* Droop by damping coefficient (no separation between 2 Model
damping and droop and no explicit "governor" function ’—{ -
DC
e Commonly used for several concepts labelled as Virtual "

Synchronous Generators (VSGs), Synchronverters etc.
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Current-Controlled VSM (CCVSM)

Vv, |
||
* Simulated inertia model ) 7
* Provides virtual rotor frequency and g i s
i . . - . |Measurement | .. e
phase angle for grid synchronization Simulated SM model . . el
. . ) v, Processing i
* Explicit "governor" function as a ‘T %l,
simple power-frequency droop ) I
. . . Voltage | e v,
* Simulated electrical model: “ Conteg) | oyl Blectrial i e o
. b ('AVR)) Model <.
* Translates internal voltage reference " T , : e
into current references for converter ;
N *| Frequency | . Inerti M
control o) e || nertia T
Dysp (‘Governor') Model | N

* Internal voltage reference provided

by outer |00p VOItage Contr0| (AVR) Example from: Olve Mo, Salvatore D'Arco, Jon Are Suul, "Evaluation of Virtual Synchronous

Machines with Dynamic or Quasi-stationary Machine Models," in IEEE Transactions on
Industrial Electronics, Vol. 64, No. 7, July 2017, pp. 5952-5962 ~
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Voltage-Controlled VSM (VCVSM)

e Simulated inertia model

* Provides virtual rotor frequency
and phase angle for grid

synchronization L

Reactive | ..

* "Governor" function can be a
simple power-frequency droop v e

* Outer loop control of reactive " Pt vimar | votage o

Control
Dy

power and voltage: i ) FISEY | e ] g i

223l Control
onro Model

i~.

=

%su_|('Governor')

* Provides voltage reference for closed [ *
loop voltage control

Example from: Salvatore D'Arco, Jon Are Suul, Olav. B. Fosso, "A Virtual Synchronous Machine
e Virtual im peda nce is necessa ry for Implementation for Distributed Control of Power Converters in SmartGrids," in Electric Power
. ) i System Research, Vol. 122, May 2015, pp. 180-197
stable operation in strong grids
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Grid-forming control vs virtual inertia
* Grid forming control can include inherent inertia emulating features
* For instance: VSM-based control or large filtering time-constant in power-frequency droop control
* Virtual or synthetic inertia can be implemented as auxiliary function in grid-
following converters
* Frequency-derivative-based inertia emulation (df/dt IE)
* Does not imply any grid-forming capability
Synchronous Machine swing Equivalent response to
equation enforced frequency variations
dw ,
Ja)r_r:pmec _pem —p A‘[ zAp z‘] —=£
dt h Vi Vi Vi dt
10 ® SINTEF
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Frequency-derivative-based inertia emulation

. 7 o Vg
Ap, | Inertia [+— M
q @p [ Phase abe
Emulation Vo
6,,, | Locked 7
. . g
 Conventional control structure with: % ] we  p, -
. . . 9| Measurement [*7.=] C
* Grid synchronization by PLL ) & T I
Processing L
* Inner loop current controllers /
e Quter loop PI controllers for active “Reactive| - o, “§ 1,
and reactive power control 7 g(‘)’r‘::f;
* Inertia emulation ) P oS
P,
* Power reference calculated from Ay | Active
“—» Power

the measured grid frequency and v »| Control
its (filtered) derivative:

Vo
Jon Are Suul, Salvatore D'Arco, "Comparative Analysis of Small-Signal Dynamics in Virtual Synchronous
Machines and Frequency-Derivative-Based Inertia Emulation," in Prc ings of the 18 ional Conference
on Power Electronics and Motion Control, PEMC 2018, Budapest, Hungary, 26-30 August 2018, pp. 344-351

N

— Dpyy (S)+ k, (w* —Wpyy (S)) ® SINTEF

Ap’ =—k, —
1 D, (S) J s+ o,
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Main differences between VSM and df/dt IE

* Virtual synchronous machines with explicit emulation of swing equation
* Emulates power-balance-based grid synchronization mechanism of a synchronous machine
»Inherent grid forming capability
» Explicit emulation of inertial dynamics

»Can operate in the same conditions as a synchronous machine (grid connected, islanded,
paralleled, black-start etc.) if a dispatchable energy source is available

* Inertia emulation based on df/dt measurement:
* Inertial response expressed as an incremental change of power reference
»Simple to implement in conventional control systems of grid following converters
* Depends on grid frequency measurement and conventional control

»>No inherent grid forming capability ®) SINTEF
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Virtual Inertia under unbalanced conditions

* Grid-following control
* Strategies for grid synchronization and power control under
unbalanced conditions are well established

* Main challenge will be related to additional delays or filtering
in the estimation of grid frequency and frequency derivative

Voltage [pu]

* VSMs and grid-forming control

* The fundamental challenges related to control of negative
sequence components are similar to grid-following control —
but the control objectives can be different

T
Phase A 1
Phase B ||
T Phase C
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Control objectives under unbalanced conditions

TR
* Four controllable current components: Pero
o+ o+ *— *— p.vzw _
i, 1, i, 1, 7 |7
* In total 6 power components G.r,
3 7 2 2 " o 920
p’ q5 pc2w’ ps2a)’ qc2a)’ qs2a) n e

* Possible to control up to four of the power components

_va,d
_vo,d

Vo

* Main control objectives are usually the average active and reactive powers

* Two remaining degrees of freedom that can be utilized to control the power flow

characteristics (i.e. the four oscillating power components)

VO,‘]

+ .
vo,q lv d
+ .+
vo,d lv q

va,d lv,d
+ .
_vo,d lv,q
+
VO:‘I
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Negative sequence control strategies

¢ Relevant control objectives
» Direct control of power flow characteristics by the negative sequence current components

* Balanced Positive Sequence Current (BPSC) control

» Constant Active Power (CAP) control — elimination of active power oscillations

* Constant Reactive Power (CRP) control — elimination of reactive power oscillations
* Impedance-based sharing of negative sequence loading

* Negative sequence virtual impedance (NSVI) control

* Negative sequence voltage control (NSVC)

* Suitable VSM-based control framework
* Current Controlled VSM — simplest way of providing closed loop negative sequence current control

* Current control in stationary frame to avoid delay of sequence separation

15 ® SINTEF
Control system overview
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16 Eros Avdiaj, Salvatore D'Arco, Luigi Piegari, Jon Are Suul,"Negative Sequence Control for Virtual Synchronous Machines Under Unbalanced @ SINTEF

Conditions" accepted for publication in IEEE Journal of Emerging and Selected Topics in Power Electronics, April 2022
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Experimental setup

* 50 kVA MMC prototypes
* Control implemented by OPAL RT

* Perturbations imposed by grid emulator

Modular Multilevel Converter

Grid Emulator

400:4007,

0-350¥, | ] =
F—L
________ |
| A4 * abe
| OPAL-RT Yur | Distributed
l—

platform i’ Control

Steady-state response

* Test in strong grid conditions with 202 AN
gn1 vV vV
a) Balanced positive sequence control (BPSC) « .
o0 0.05
b) Constant active power control (CAP) 01
c) Constant reactive power control (CRP) ;"% 0 \v, \u/\/\;[\\f\f

d) Negative Sequence Virtual Impedance (NSVI) 01
1]

0.05

* Performance as expected E 5 s20p ’
L:;j 5500 \/
* Negative Sequence Voltage Control ~ ~ 450 u“‘
1] 0.05
is not applicable for strong grid
L. . T o2
conditions and is not tested % _am%:;;::
1]
1] 0.05
Time [s]

a)
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Demonstration of inertial response

* Test of power reference change and grid frequency perturbation

* Almost identical inertial response independently of negative sequence current control
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* Imposing current amplitude limitation: [ 17 ]
09 4
]]im :|l:|+|l‘:| :\/i‘idz +iv+,q2 +\/i\:,d2 +i\:,q2 EO_S— ................................................ |
. i g PR 2 S N e e
* Solving for the load angle that will lead % | ]
to current amplitude equal to the g o5k
current limit §oaf ]
* Result can be substituted back into £, — |
. : CAP
expression for average power flow o1l crp ]
NSVI
* Plots illustrate power transfer 0 005 01 015 02 025 03 035 04 045 05
. . . . Negative sequence voltage amplitude, |v'0| [pu]
capability with 1.0 pu current limit
20 ® SINTEF
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* Highlights how BPSC, & o 0 0 0 0
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Time [s] Time [s] Time [s] Time [s] Time [s]
a) BPSC b) CAP ¢) CRP d) NSVI e) NSVC
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* Virtual inertia can be provided by both "grid-following" and "grid-forming" converters
« Similar effect on equivalent inertia but different operational characteristics and limitations
* Virtual Synchronous Machines as examples of "grid-forming" control
* Three main classes of implementation: direct modulation, current controlled (CCVSM) or voltage controlled (VCVSM)
* Introduction to VSM control for unbalanced conditions
e CCVSM with different options for control of negative sequence currents
* Openissues
* Protection and current saturation under unbalanced conditions
* Methods for modelling, analysis and tuning of MMC VSMs designed for unbalanced conditions
* Interaction between multiple units or with grid following converters under unbalanced conditions
2 ® SINTEF
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