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Abstract

When CO2 is injected into a deep formation, it will migrate as a plume that moves progressively
higher in the formation, displacing the resident brine. The invasion front is driven by gravity, and the
upward movement of the plume is limited by a low-permeable caprock. Several authors have recently
proposed to make a sharp-interface assumption and only describe the plume migration in a vertically-
averaged sense. For inhomogeneous permeability, the plume migration is then described by a system
of conservation laws with spatially discontinuous flux. If one disregards dissolution and residual
trapping, the system reduces to a scalar conservation law with a spatially dependent flux function,
which may exhibit different solutions depending on the entropy condition that is enforced to pick
a unique solution. We propose a certain set of assumptions that lead to the so-called minimum-
jump condition and derive the corresponding solutions to the Riemann problem. Solutions to this
problem are fundamental when developing accurate Godunov-type schemes. Here, we take a slightly
different approach and present an unconditionally stable front-tracking method, which is optimal for
this type of problem. Moreover, we verify the well-known observation that a standard upstream
mobility discretization can give wrong solutions in certain cases.



Introduction

When CO2 is injected into a deep formation, such as a saline aquifer or an abandoned petroleum reser-
voir, it will spread out from the injection well and displace the resident brine. At relevant conditions, the
CO2 is in a supercritical state and will form a second liquid phase that is slightly soluble in water, but
also less dense and much less viscous than the resident brine. The injected CO2 will therefore migrate
as a plume that moves radially outwards and progressively higher in the formation, limited above by the
low-permeable caprock that bounds the aquifer or reservoir. Although the invasion front is mainly driven
by gravity, there are several other important processes going on, like dissolution of CO2 into brine, for-
mation of wet CO2 because of evaporation of water into the CO2 phase, formation of a front of dry CO2,
precipitation of salt, etc. Likewise, the time scale of interest for a CO2 storage operation will typically
be hundreds or thousands of years, during which the plume may move several tens of kilometres. On the
other hand, the CO2 plume will tend to form a very thin fringe under the rock. Complex physics, long
time scale, and large differences in the lateral and vertical scales pose severe challenges to the numerical
methods used to model CO2 migration. In particular, several benchmark studies, see e.g., Class et al.
(2009), have shown that it is difficult to obtain 3D simulations with sufficient vertical resolution.

Vertical equilibrium (VE) models have long traditions for describing flow in porous media. In hydrology,
the assumption of vertical equilibrium is known as the Dupuit approximation and is a good description
of nature for most flow situations. In the oil industry, VE models were extended to two-phase and
three-phase segregated flow (Martin, 1958; Coats et al., 1967; Martin, 1968). In particular, Coats et al.
(1971) advocated comparing simulations of 2D vertical cross-sections to corresponding 1D simulations
with a vertical averaged model to check if the assumptions for the latter was present, and then use this
model to save computational time or gain resolution whenever applicable. As computational resources
increased, VE models became less and less used. Recently, however, there has been a renewed interest
(Nordbotten et al., 2005; Celia et al., 2006; Nordbotten and Celia, 2006) in these methods as a means
to simulate large-scale CO2 migration, for which a sharp-interface assumption with vertical equilibrium
may be reasonable because of the large density and viscosity differences between supercritical CO2 and
brine. Because the time scales of interest are long and the injection volumes are large, the assumptions
of the VE models are fulfilled for large space and time domains. Indeed, in many cases the errors
resulting from the VE assumption may be significantly less that the errors introduced by the overly
coarse resolution needed to make 3D simulation model computationally tractable. Vertically averaged
(VA) simulations may then be attractive to increase (lateral) resolution while saving computational cost.

The VE formulation for multiphase flow in heterogeneous media leads to a system of a pressure and a
transport equation that can be written in a standard fractional-flow formulation. Many authors (Hesse
et al., 2007, 2008; MacMinn and Juanes, 2009; Huppert and Woods, 1995; Lyle et al., 2005; Vella
and Huppert, 1995) have considered gravity-driven flow in the VA equations in detail for homogeneous
permeability. In particular, Ruben Juanes and Szulczewski (2010) derived analytical solutions based
on Riemann problems in the hyperbolic limit (lateral scale� vertical scale). Analytical and numerical
results from VA calculations can be used to provide order-of-magnitude estimates for travel times and
distances on basin scale and enable simplified calculations of the CO2 inventor. Likewise, simplified
VA calculations are well suited in combination with Monte–Carlo simulations to calculate stochastic
leakage estimates for scenarios with large uncertainty.

For heterogeneous media, the pseudo relative-permeability curves appearing in the VA transport equa-
tion include the vertical variation of the horizontal permeability (Coats et al., 1971; Nordbotten and
Celia, 2010). This introduces a hyperbolic term with a discontinuous flux function in the transport equa-
tions. Analytical solutions for hyperbolic equations with discontinuous flux functions are significantly
more complex to derive, in particular, for equations with nonmontone flux functions as in the VA models.
The study of accurate and consistent numerical methods for equations with discontinuous flux functions
has been given much attention in recent years (Andreianov et al., 2010; Burger et al., 2009; Adimurthi
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Figure 1 Illustration of the CO2 plume as assumed in the VA modelling.

et al., 2005). In particular, Mishara and Jaffré (2010) showed that the standard upstream mobility dis-
cretization will give non-physical solutions for two-phase transport models with changing rock type.
In a recent paper, Andreianov et al. (2010) pointed out that there is a continuum of different entropy
solutions to hyperbolic equations with discontinuous flux functions. They also constructed a numerical
method that will converge to each of the different entropy solutions, depending on a parameter at the
flux discontinuities. Herein, we investigate the appropriate interface conditions for the scalar VA model
derived by neglecting dissolution and residual trapping, and solve the Riemann problem associated with
the most relevant shapes of the flux functions. Based on these solutions, we construct an uncondition-
ally stable front-tracking method. We show that this method is capable of resolving the dynamics of the
model in the hyperbolic limit. For injection and long-time storage of large amounts of CO2, it is crucial
to have a method that can give accurate results on the large scale corresponding to the hyperbolic limit.
Finally, based on our Riemann solutions we point out the particular cases in which a standard upstream
mobility discretization will fail.

Mathematical Formulation

In the following, we will use VA transport equations written on the following form

∂s

∂t
+

∂

∂x

[
f(s, x)v + fg(s, x)

[
g(x) +∇pc(s, x)

]]
= q(x). (1)

Referring to Figure 1, s = h/H is the relative height of the CO2 plume and is a function of time t and
the spatial distance x along the dipping reservoir. The function g is the gravity component along x, v
is the drift in the aquifer (which we for simplicity assume to be known), q is a source term, f is the
fractional flow function, and fg the gravitational fractional flow. The latter two are given by

λco2(s, x) =
∫ sH(x)

0
kco2(1)Kx(z, x)dz, λw(s, x) =

∫ H(x)

sH(x)
kw(1)Kx(z, x)dz

f(s, x) =
λco2(s, x)

λco2(s, x) + λw(s, x)
, fg(s, x) = λw(s, x)f(s, x),

where kα denote the relative permeabilities of brine and CO2; to simplify our argument, both viscosities
are assumed to be equal unit. If we disregard capillary forces in the underlying flow model, our VA-
equivalent of the capillary term reads pc(s, x) = g∆ρ s. A thorough derivation of similar VA models
can be found in e.g., (Coats et al., 1967; Nordbotten and Celia, 2010).

Having established our model, we point out a few qualitative features: For constant x, the flux function
f(s, x) is monotone whereas fg(s, x) has one critical point and fg(0, x) = fg(1, x) = 0. Moreover,
∂spc < 0 because g∆ρ is negative. To illuminate the relative importance of the various terms, we change
variables and let x→ xL, where x now is a dimensionless distance. Then the VA transport equation (1)
takes the form

∂s

∂t
+

1
L

∂

∂x

(
f(s, x)v +Hfg(s, x)

[
g(x) +

H

L
∇pc(s, x)

])
= q(x), (2)
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Figure 2 Illustration of the function h(s, ·) sampled at different locations in a realistic reservoir model.

from which it is clear that the large-scale (H/L � 1) and the hyperbolic limits are the same if all
functions vary smoothly on scales less then the large scale. Moreover, writing the equation in this form
also highlights the importance of using a stable discretisation for the hyperbolic part since the parabolic
term is degenerate at the endpoint. Hence, for some value of s, the numerical dispersion will dominate
the physical dispersion arising from the∇pc term. The importance for considering the degenerate points
of the parabolic term when choosing a numerical method for a mixed hyperbolic–parabolic equation has
been studied by many authors. The interested reader may consult Holden et al. (2010) for an overview
of relevant references.

In the rest of the paper, we will focus entirely on the large-scale limit, in which case (1) becomes a
hyperbolic conservation law. To simplify the presentation, we assume no drift in the aquifer, giving the
discontinuous flux problem

∂s

∂t
+

∂

∂x
h(s, x) = q(x), h(s, x) = fg(s, x)g(x), (3)

for which the solution must be found in a weak sense. Weak solutions of are not unique and an en-
tropy condition must be imposed to single out the unique physically correct solution. If h(·, x) is a
continuous function, the correct entropy solution can be found from the standard vanishing-viscosity
method; that is, we add the term εsxx to the right-hand side of (3) and select our physically correct
solution s(x, t) as the limit of sε(x, t) as ε → 0, giving the classical Kruzkov framework for entropy
conditions (Kružkov, 1970). When h(·, x) is a discontinuous function, (3) may possess many different
L1-contractive semigroups of solutions that correspond to different physical phenomena modelled by
the same equation, but with different dissipative processes occuring on the discontinuities of the solu-
tions (Andreianov et al., 2010). To derive entropy conditions that are suitable for (3), we will therefore
in the next section study the underlying physical phenomenon giving rise to the discontinuous behaviour
in the VA model. Knowledge of what are the appropriate entropy conditions is important when devel-
oping numerical schemes that are guaranteed to capture the large-scale effects of unresolved subscale
phenomena correctly.

Numerical Investigation of the Discontinuous Riemann Problem

The spatial dependence in the flux function of (3) comes from two different effects: (i) topographical
variations of the top and bottom surfaces bounding the aquifer, and (ii) spatial dependence in the perme-
ability. Herein, we will neglect the former and focus on the behaviour of the permeability K(x, z) as a
function of x. Figure 2 shows a set of flux functions sampled from a realistic reservoir model that has
relatively small permeability variations.

To develop an understanding of what effects a permeability-induced discontinuity will have on the so-
lutions to (3), we assume that although h(s, x) will appear as discontinuous on the large scale, there is
a smaller scale on which the variation in k(x, z) will give a function h(·, x) that is continuous in x. On
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Figure 3 The left columns shows the idealised aquifer geometry with impermeable regions shown in grey. The top
plot shows the geometry that gives a discontinuous flux, whereas in the lower plots the impermeable steps have
been smoothed so that the flux function h(·, x) becomes continuous in x. The right plot shows the corresponding
flux function.

this much smaller scale, the transport equation (3) will not have a discontinuous flux, and the physically
correct solution will be the one predicted using the standard Kruzkov entropy theory (Kružkov, 1970).
The assumption of the existence of such a scale is, of course, a simplification, but we believe that it is
reasonable for our purpose herein.

Specifically, we will consider the behaviour of a highly idealised case where the aquifer is rectangular
and contains two impermeable steps as illustrated in Figure 3. This particular setup will exaggerate
effects observed in realistic models with finite permeability variations. In our set up, h(x, s) is designed
such that

lim
x→±∞

h(s, x) = h±(s). (4)

To resolve the small-scale behaviour using the standard Kruzkov theory, we smooth the edges of the
impermeable regions so that the flux function will change smoothly on a length scale σ. That is, we set

h(s, x) = (h+(s)hσ(x) + h−(s)
(
1− hσ(x)

)
)(1 + exp(x/σ)), hσ(x) = 1

2

(
1− tanh(xσ )

)
(5)

Figure 3 shows the geometries for two different choices of the length scale σ as well as the resulting flux
functions.

As we stated above, our interest will eventually be in the effects that this permeability heterogeneity has
on the flow on a much larger scale. On the large scale, the interface conditions will be given by

lim
x→±∞

s = s±, (6)

which has to fulfil the Rankine–Hugoniot condition f−(s−) = f+(s+). To determine the interface
states, we start the simulations with initial condition

s(x, 0) =

{
sL, for x < 0,
sR, otherwise.

(7)

and solve to stationary state. For a given fine-scale flux f(s, x), this gives a unique mapping from
(sL, sR) to (s−, s+). The discontinuous flux problem, on the other hand, does not give such a unique
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Figure 4 Numerical calculation of the Riemann problem corresponding to Figure 3 for σ = 4H (top row) and
σ = H/20 (bottom row).

relationship, and when choosing a numerical method for the large-scale problem we should ensure that
it picks out the unique mapping that reflects the correct fine-scale behaviour.

A careful computational analysis of our setup suggests that the correct entropy condition on the large
scale is the so-called minimal jump condition, which selects the weak solution that has the least jump
across the stationary interface where the flux function is discontinuous. To support this conclusion,
we present simulations of two opposite cases of the flux function given above, (5), corresponding to
σ = 4H and σ = H/20. Figure 4 shows the resulting mappings for these two cases. To help the reader
understand the figure, we consider the solution of the corresponding large-scale Riemann problem:

∂s

∂t
+
∂h(s, x)
∂x

= 0, (s, h) =

{
(sL, h−(s)), for x < 0,
(sR, h+(s)), otherwise.

(8)

We rescale the problem slightly so that 0 ≤ h(s, x) < 1, fix sR = 0.44, and consider how the Riemann
solution satisfying the minimal-jump condition changes with varying values of sL. In Figure 5, we have
plotted the Riemann solution in (s, h) and (x, s) space. Letting sL vary in the interval [0, 0.475], we
observe three different types of Riemann solutions (in the following s̄ will denote the value at which
h−(s) = h+(s)):

Region 1 For sL ⊂ [0, 0.04], we have that h−(sL) < h+(sr) and the solution consists of a stationary
shock at x = 0 between the values sL and s− = sL + 0.4 and a shock between the values s− and
sR that propagates to the right.

Region 2 For sL ⊂ [0.04, 0.1], the solution consists of a stationary shock at x = 0 between the values
sL and s− = sL+ 0.4 and a rarefaction wave between the values s− and sR that propagates to the
right.

Region 3 For sL ⊂ [0, 0.04] the solution consists of a shock between values sL and s− = s̄ = 0.5 that
propagates leftward and a rarefaction fan between values sR and s̄ that propagates to the right.

In Regions 1 and 2, the interface value s− is continuously increasing, as is also observed in Figure 4.
The interface value s̄ observed in Region 3 in Figure 5 clearly corresponds to the plateaus formed in the
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Figure 5 Solution to the large-scale Riemann problem (8) for fixed uR = 0.44. The left plot shows the solutions
in (s, f) space, where the red circles are the left states that increase in the interval [0, 0.475], the blue circles are
the left states at s− = s(0−, t), and the green lines represents the shocks (and rarefactions) in the Riemann fan.
The plots in the right column show the similarity solutions s(x, t) = s(x(t) in the three different regions.
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Figure 6 Comparison of the Riemann solution for sL = 0.59 and sR = 0.41 obtained with the minimal-jump
condition (top) and the Mishra–Jaffré condition (bottom). States to the left of the interface are in red colour, states
to the right are in blue, and states at the interface are in green.

s− and s+ surfaces for σ = H/20 in Figure 4. In summary, we believe that these results confirm that
the minimal-jump condition is correct when considering large-scale behaviour.

For the opposite case of σ = 4H , we see that the plateau values are significantly smaller for s− and
significantly larger for s+ and that the interface flux is also much higher. These solutions seem to
correspond to the admissibility condition advocated by Mishara and Jaffré (2010), which may be correct
when studying flows where the transitions inK(x, z) do not occur on a scale that is significantly smaller.
It may be illuminating to contrast Riemann solutions obtained with the minimal-jump and the Mishra–
Jaffré condition. This is done in Figure 6 for a specific set of initial conditions. Both solutions predict
two rarefaction fans emanating from x = 0, but whereas the Mishra–Jaffré solution has a stationary
discontinuity and introduces values outside the span of the initial states, the minimal-jump solution
is monotone and has no stationary discontinuity at x = 0. These results confirm the observations in
Figure 4: the flux at the interface is significantly higher for the Mishra–Jaffré solution than for the
minimal-jump solution, and the interface states observed in Figure 6 seem to correspond to the plateau
values in Figure 4.
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Figure 7 Solution to the Riemann problem for the conceptual setup shown in Figure 3. The red/blue circles denote
the left/right states, the solid red/blue lines denote waves moving to the left/right, the dashed red/blue lines show
all the left/right states that fall into the same category of solutions, and the green circle shows the new intermediate
state introduced at x = 0. If the solid lines coincide with the underlying flux function, the corresponding wave is
a rarefaction, and otherwise it is a shock.

The observations above have also been partially confirmed by a large number of 2D simulations of the
full two-phase equations on setups where we instead of the impermeable regions in Figure 3 used low-
permeable regions. However, here it has been difficult to obtain results with sufficient resolution to
produce a plot similar to Figure 4.

Solution to the Riemann Problem

In the previous section, we considered a simplified and conceptual model of a permeability-induced
discontinuity in the large-scale VA transport equation (3). By studying the same problem on a much
smaller scale, on which the flux discontinuity is replaced by a smooth transition, we derived an appro-
priate admissibility condition that will enable us to pick the unique entropy-weak solution of (3). In
this section, we will continue with the idealised model from the previous section and use the entropy to
derive the full solution to the Riemann problem (8). Solutions to the Riemann problem are fundamental
when using the Godunov approach for developing accurate (high-resolution) schemes. We emphasise
that although our conceptual model is very simple, it contains (almost all) the characteristics necessary
to develop Riemann solutions for flux functions arising in realistic injection scenarios. Indeed, the only
purpose of exaggerating the permeability contrasts is to make the presentation of Riemann solutions
more transparent to the reader.

Figure 7 shows all permissible solutions to the Riemann problem for the setup in Figure 3. The solutions
can be divided into three different categories:

Type 1L If the left state fulfils either sL ≥ s̄ or h−(sL) ≥ h−(s̄) and the right state fulfils either
sR ≤ s̄ or h+(sR) ≥ h+(s̄), then the solution will consist of two ordinary Riemann fans. The
first Riemann problem is defined between sL and s̄ using the flux h−(s) and gives waves with
negative speeds that propagate leftward from x = 0; the wave will be a shock if sL < s̄ and a
rarefaction if sL > s̄ (states with sL > 0.6 correspond to CO2 in the impermeable region and are
therefore not interesting here). Likewise, the second Riemann problem is defined between sR and
s̄ using the flux h+(s) and gives waves with positive speeds that propagate rightward from x = 0;
the wave will be a rarefaction if sR < s̄ and a shock if sR > s̄.

Type 2L If sL < s̄ and h−(sL) < h−(s̄), and either sR < s̄ or h+(sR) ≥ h−(sL), the solution will
consist of: (i) a stationary shock at x = 0 between the values sL and the value s+ that fulfils
the conditions h+(s+) = h−(sL) and dh+

dx (s+) > 0, and (ii) a Riemann fan with positive wave
speeds defined as the solution of the ordinary Riemann problem between sR and s+.

Type 3L If sR > s̄ and h+(sR) < h+(s̄), and either sL < s̄ or h−(sL) ≥ h+(sR), the solution will
consist of: (i) a stationary shock at x = 0 between the values sR and the value s− that fulfils
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Figure 8 Solution to the Riemann problem for the conceptual setup opposite to the one shown in Figure 3. The
colours and symbols are explained in Figure 7.

the conditions h−(s−) = h+(sR) and dh−

dx (s−) < 0, and (ii) a single Riemann fan with negative
wave speeds defined as the solution of the ordinary Riemann problem between sL and s−.

For completeness, we also present the solution for the opposite case of Figure 3 in which the imperme-
able region is at the top left of the discontinuity line and at the bottom right of the line. Figure 8 shows
the three different categories of Riemann solutions:

Type 1U Let a± = argmaxh±(s). Then if sL ≥ a+ and sR ≤ a−, the solution consists of: (i) a
rarefaction wave with negative speeds connecting the states sL and a−, (ii) a stationary shock
connecting a− and a+, and (ii) a rarefaction wave with positive speeds connecting a+ and sR.

Type 2U If sR > a+ and either sL > a− or f−(sL) > f+(sR), the solution consists of: (i) a stationary
shock connecting sR to the value s− that fulfils the conditions h−(s−) = h−(sR) and dh−

dx (s−) <
0, and (ii) a rarefaction fan connecting sL and s− if sL > s− or a shock between sL and s−

otherwise.

Type 3U Symmetric to Type 2, with a stationary shock connecting sL and s+ and either a rarefaction
wave or a shock connecting s+ and sR, depending upon whether sR < s+ or not.

In the next section we will use the solutions of the Riemann problem to develop a semi-analytical method
that is particularly efficient for computing accurate approximations to (3).

An Unconditionally Stable Front-Tracking Method

The Riemann problems solved in the previous section take a particularly simple form if the flux function
h(s, ·) is a piecewise linear function of s. Then, all rarefaction fans will be self-similar step functions,
i.e., consist of a set of constant states separated by straight space-time rays. If also h(·, x) and s(x, 0) are
piecewise constant functions of x, we can solve (3) analytically by solving the local Riemann problems
posed by the initial data and keep track of all the resulting discontinuities (shocks and space-time rays
in rarefaction waves) and solve new Riemann problems whenever two of them collide.

The algorithm is perhaps best illustrated by considering a problem. To this end, we consider the domain
[−2, 2], set s(x, 0) ≡ 0.56, and impose flux discontinuities at x = ±0.5 corresponding to three imper-
meable regions along the upper, lower, and upper boundaries of the aquifer. Figure 9 shows the resulting
solution profiles and the corresponding discontinuities plotted in (x, t) space. The Riemann problem
at x = −0.5 is of Type 2U, giving a discontinuity propagating to downward, corresponding to a CO2

slug forming in front of the step. The Riemann problem at x = 0.5 is of Type 1L, giving a rarefaction
wave propagating downward and a shock going up-slope. Just before t = 0.2, the tip of the rarefaction
wave reaches the left discontinuity; this corresponds to brine flowing over the step and down under the
increasing CO2 slug in front of the step.
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Figure 9 Illustration of the front-tracking algorithm. The left plot shows the discontinuities in (x, t) space and
the plots in the right column show the solutions at times t = 0.1, 0.2, and 0.4.

For a general problem, one can make the piecewise constant/linear approximations to s(x, 0) and h(s, x)
and solve the corresponding approximate PDE problem analytically as an alternative to using a finite-
volume or finite-element method. The resulting method is called front tracking and has been used
previously by many authors to study flow in porous media. Although the method is admittedly more
complex to implement than a standard finite-volume method, is has several nice properties. First of all,
it is unconditionally stable, which is an advantage when studying long-time behaviour in large-scale
domains. Moreover, it is grid-independent (apart from the approximation of s(x, 0) and h(·, x)), and
gives sharp resolution of shock fronts and other discontinuities. We refer readers interested in more
details to the book by Holden and Risebro (2002).

Comparison with the Upstream Mobility Scheme

The upstream mobility scheme is widely used within hydrology and petroleum engineering, and will
therefore typically be implemented in solvers used to study CO2 storage. For the setup analysed herein,
this finite-volume scheme takes a simple form:

sn+1
i = sni −

∆t
∆x

[ λco2(sni )λw(sni+1)
λco2(sni ) + λw(sni+1)

−
λco2(sni−1)λw(sni )
λco2(sni−1) + λw(sni )

]
(9)

where sni is the average height of the CO2 plume in grid cell i at time n∆t.

In a recent publication, Mishara and Jaffré (2010) demonstrated that the upstream mobility scheme can
produce wrong results for discontinuous flux problems modelling two-phase flow with relative perme-
ability changing with the rock type. Here, we will verify that the method produces wrong solutions also
for the large-scale VA transport equation (3). To this end, we revisit the Riemann problem from Fig-
ure 6, with sL = 0.59 and sR = 0.41. Figure 10 shows the solution computed by the upstream mobility
scheme, which we recognise as the solution satisfying the Mishra–Jaffré admissibility condition, which
our analysis has shown is not the physically correct solution. The figure also shows the solution of a
Type 2L Riemann problem, for which our entropy solution would consist of a single shock propagating
leftward.
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Figure 10 Solution of Riemann problem of Type 1L with initial states sL = 0.59 and sR = 0.41 (top) and Type 2L
with initial states sL = 0.59 and sR = 0.41 (bottom) computed with the upstream mobility scheme (9).

Concluding Remarks

In this paper, we have considered scalar conservation laws with discontinuous flux arising from vertically-
averaged models for CO2 migration on large spatial and long temporal scales. Recent research has shown
that discontinuous flux problems can have very different solutions depending on the physics they model.
To derive the correct admissibility conditions, we considered an idealised flow problem on a much
smaller scale than the scale of interest for migration studies. Our numerical experiments indicate that
admissible solutions on the large scale should be selected using the so-called minimal jump condition;
the determining factor here is how the continuous fine-scale flux functions approach their discontinuous
large-scale limit. This is again determined by the fine-scale permeability behaviour. Other admissibility
conditions are obtained if we make different assumptions. In this aspect, the minimal jump and the
Mishra–Jaffré conditions appear as end-member cases.

Using the admissibility condition, we derived the full entropy solution of the Riemann problem. Rie-
mann problems are fundamental in the design of high-performance numerical method. As an example of
such a method, we briefly presented a semi-analytical front-tracking method that has previously shown
to be near-optimal for 1D (scalar) conservation laws. Moreover, the method is a key ingredient in effi-
cient operator splitting methods for 2D parabolic problems of the form (1) that have a strong hyperbolic
character, see Holden et al. (2010). How to apply these methods to study large-scale CO2 migration is
still a topic for further research.

Finally, we verified an earlier observation by Mishara and Jaffré (2010) that the widely used upstream
mobility scheme will produce incorrect solutions in several cases for (8). At the time of writing, it is not
clear how important this is for practical computations of real-life models, but the issue should be looked
into to increase the confidence in computations using vertically-averaged models.
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