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A recent macroscopic theory of biphasic flow in porous media �R. Hilfer, Phys. Rev. E 73, 016307 �2006��
has proposed to treat microscopically percolating fluid regions differently from microscopically nonpercolating
regions. Even in one dimension the theory reduces to an analytically intractable set of ten coupled nonlinear
partial differential equations. This paper reports numerical solutions for three different initial and boundary
value problems that simulate realistic laboratory experiments. All three simulations concern a closed column
containing a homogeneous porous medium filled with two immiscible fluids of different densities. In the first
simulation the column is raised from a horizontal to a vertical orientation inducing a buoyancy-driven fluid
flow that separates the two fluids. In the second simulation the column is first raised from a horizontal to a
vertical orientation and subsequently rotated twice by 180° to compare the resulting stationary saturation
profiles. In the third simulation the column is first raised from horizontal to vertical orientation and then
returned to its original horizontal orientation. In all three simulations imbibition and drainage processes occur
simultaneously inside the column. This distinguishes the results reported here from conventional simulations
based on existing theories of biphasic flows. Existing theories are unable to predict flow processes where
imbibition and drainage occur simultaneously. The approximate numerical results presented here show the
same process dependence and hysteresis as one would expect from an experiment.
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I. INTRODUCTION

Although the simultaneous flow of two immiscible and
partially wetting fluids inside a porous medium with mixed
or variable wettability follows the laws of ordinary hydrody-
namics and thermodynamics, the metastable and strongly
correlated fluid and interface configurations inside the pore
space have resisted theoretical analysis on macroscopic
scales for more than a century �1–8�. Darcy’s law and its
extension to multiphase flow �9–12� are limited to experi-
ments in which the microscopic fluid-fluid interface does not
move �13–15�.

Multiphase flow phenomena in porous media are of enor-
mous scientific interest and importance in applications rang-
ing from oil recovery �16–18�, soil remediation �19�, and
CO2 sequestration �20� to paper manufacturing �21� and wa-
ter management in fuel cells �22�. Although the microscopic
flow processes are well understood a macroscopic theory
predicting capillary hysteresis and residual fluid distributions
remains a highly debated subject �23–27� �see �28–30� for a
discussion of this uncommon situation�. In fact, the constitu-
tive capillary pressure and relative permeability functions of
the accepted Darcy-type theories are difficult to measure �31�
and they depend not only on saturation but also on process
history �32,33�, velocities �34,35�, dynamic effects �36,37�,
interfacial areas �38�, flow regimes, and connectivity �39� of
the fluids. One tries to cope with these problems by assuming
that the extra variables other than saturation can be neglected
and one assumes specific parameter functions individually
for each displacement process. Recently a different approach
was proposed in �29,30,40,41� that eliminates the need to
assume capillary pressure functions or relative permeabilities
beforehand. Exact and semianalytical solutions of the equa-
tions were found in these papers for various special cases.

More work on realistic boundary and initial value problems
was found necessary to compare the theoretical predictions
with experiment.

The purpose of this paper is to propose and solicit experi-
ments by obtaining numerical solutions that allow us to dis-
tinguish the extended theory from the traditional theory. For
simplicity we focus on one-dimensional profiles and investi-
gate three realistic initial and boundary value problems.
These can be realized experimentally using a closed column
filled with a homogeneous porous medium and two immis-
cible fluids. To our knowledge such experiments have not yet
been reported in the literature. Our objective is to compute
one-dimensional saturation, velocity, and pressure profiles.
Using an adaptive grid solver we are able to find approxi-
mate numerical profiles that converge to the analytical solu-
tion upon refinement.

Given these objectives the paper is structured as follows.
Let us begin with a brief review of the underlying theory
�29,30,40,42,43� in Sec. II. Once the basic balance laws and
constitutive assumptions have been formulated the numerical
methods and algorithms to solve the resulting set of coupled
nonlinear partial differential equations are presented in Sec.
III. Reformulations and adaptations were necessary to cast
these equations into a form suitable for a recently developed
adaptive moving-grid algorithm �44,45�. It was originally de-
signed to solve conservation laws. A discussion of boundary
conditions, initial values, and model parameters is then given
in Sec. IV. Model simulations of three experiments on a
closed column are finally reported in Sec. V.

All three simulations describe the raising of a closed col-
umn in a gravitational field from a horizontal position as
proposed and described theoretically in �30�. In the first
simulation the column is rotated by 90° from a horizontal to
a vertical orientation. In the second simulation the vertically
oriented sample is subsequently rotated twice by 180°. In the
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third simulation the sample is first rotated by 90° from hori-
zontal to vertical orientation, and then returned back to the
original horizontal orientation. The main idea behind these
simulations is to illustrate similarities and differences to the
standard model. To our knowledge quantitative experimental
results for the proposed experiments are currently not avail-
able in the literature.

II. MATHEMATICAL MODEL

A. Balance laws

The mathematical model was originally formulated in
�29,30,40�. It is based on ideas introduced earlier in �42,43�.
The notation and formulation below follows that given in
�30�. It was recently extended in �41�. For simplicity, in this
paper the discussion will be restricted to one dimension. A
one-dimensional porous medium is an appropriate idealiza-
tion for a column experiment.

Consider immiscible displacement inside a column. The
column is idealized as a one-dimensional, homogeneous, iso-
tropic, and incompressible porous medium without isolated
pores. Its connected pore space is filled with two incom-
pressible and immiscible fluids, called water and oil. The
fluids and the medium are described on length scales much
larger than the pore scale. On these length scales a con-
tinuum mechanical description in terms of saturation, pres-
sure, and velocity fields applies. The saturations
SW=SW�x , t� of water and SO=SO�x , t� of oil are functions of
position x� �xL ,xR��R and time t�0.

The key concept of the generalized model is that the per-
colating ��connected� and the nonpercolating ��not con-
nected� phases have to be treated separately. Following the
notation of �30� the percolating phase of water is indexed by
i=1 and its nonpercolating phase is indexed by i=2. The
water saturation is then obtained as SW=S1+S2. The perco-
lating oil phase is indexed as i=3 and its nonpercolating
phase is indexed as i=4. The oil saturation is defined as
SO=S3+S4. The volume fraction �i of phase i is defined as
�i=�Si, where the porosity � is volume fraction of the pore
space. The volume fraction of the solid matrix is denoted as
�5=1−�. Volume conservation requires

�1 + �2 + �3 + �4 + �5 = 1, �1a�

S1 + S2 + S3 + S4 = 1, �1b�

1 − � = �5 �1c�

to hold.
The mass balance of fluid phase i can be expressed in

differential form as

���i�i�
�t

+
���i�ivi�

�x
= Mi, �2�

where �i�x , t� ,�i�x , t� ,vi�x , t� are mass density, volume frac-
tion, and velocity of phase i as functions of position x
� �xL ,xR� and time t�R+. The quantities Mi denote the
mass-transfer rates from all other phases into phase i. The
momentum balance is written as �i=1,2 ,3 ,4�

�i�i
Di

Dt
vi − �i

��i

�x
− �iFi = mi − viMi, �3�

where �i is the stress tensor in the ith phase, Fi is the body
force per unit volume acting on the ith phase, mi is the mo-
mentum transfer into phase i from all the other phases, and
Di /Dt=� /�t+vi� /�x denotes the material derivative for
phase i.

B. Constitutive assumptions

For a macroscopically homogeneous porous medium,

��x� = � = const �4�

is assumed. Incompressible fluids are assumed so that their
densities

�1�x,t� = �W, �5a�

�2�x,t� = �W, �5b�

�3�x,t� = �O, �5c�

�4�x,t� = �O �5d�

are independent of x , t.
The percolating and the nonpercolating phases are able to

exchange mass through breakup and coalescence of droplets,
ganglia, and clusters. The mass-transfer rates must depend on
rates of saturation change. They are assumed here to be

M1 = − M2 = �2��W� S2 − S2
�

SW
� − SW

� �SW

�t
, �6a�

M3 = − M4 = �4��O� S4 − S4
�

SO
� − SO

� �SO

�t
, �6b�

where �2 ,�4 are constants. The parameters SW
� ,SO

� ,S2
� ,S4

� are
defined by

SW
� = �1 − SOim����tSW� + SWdr�1 − ���tSW�� , �7a�

SO
� = 1 − SW

� , �7b�

S2
� = SWdr�1 − ���tSW�� , �7c�

S4
� = SOim���tSW� , �7d�

where SWdr ,SOim are limiting saturations for S2 ,S4. In Eq. �7�
the shorthand �t=� /�t is used and

��x� = �1, x 	 0

0, x 
 0
� �8�

denotes the Heaviside unit step function. Equation �7� fol-
lows from the form used in �29,30� for small rates of satura-
tion change.

Turning to the momentum balance equations, note first
that the inertial terms will not be neglected in this paper. The
stress tensors for the four phases are specified as
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�1 = − P1, �9a�

�2 = �− P3 + �P2
�S2

�−1� , �9b�

�3 = − P3, �9c�

�4 = �− P1 + �P4
�S4

�−1� , �9d�

where P1 and P3 are the fluid pressures in the percolating
phases. The constants P2

� , P4
� and exponents � ,� are consti-

tutive parameters. They can be determined experimentally
from capillary pressure functions and may have very differ-
ent magnitudes. The pressure for the nonpercolating phases
is changed as compared to the ambient pressure of the sur-
rounding phase. This phenomenon was anticipated in �29,30�
and seems indeed to have recently been observed in experi-
ment �46�. The macroscopic body forces are assumed to be
given by gravity and capillarity. They are specified as

F1 = �1g sin 
 , �10a�

F2 = �2g sin 
 + �a
�S1

−�

�x
, �10b�

F3 = �3g sin 
 , �10c�

F4 = �4g sin 
 + �b
�S3

−�

�x
, �10d�

with constitutive constants �a , �b and exponents
� , �	0. Note that capillary body forces do not exist on the
pore scale, but appear only in the coarse graining from pore
to macroscale. Again, these parameters can be determined
experimentally. The angle 0


� /2 is the angle between
the direction of the column and the direction of gravity with

=� /2 corresponding to alignment. Finally, the momentum-
transfer terms are assumed to be given by linear viscous drag
characterized by constitutive resistance coefficients Rij
through the equations

m1 = R13�v3 − v1� + R14�v4 − v1� − R15v1, �11a�

m2 = R23�v3 − v2� + R24�v4 − v2� − R25v2, �11b�

m3 = R31�v1 − v3� + R32�v2 − v3� − R35v3, �11c�

m4 = R41�v1 − v4� + R42�v2 − v4� − R45v4, �11d�

where R12=0 and R34=0 were used because there is no com-
mon interface and hence no direct viscous interaction be-
tween these phase pairs. Remember that the index i=5 rep-
resents the rock matrix. For more details on these
constitutive assumptions the reader is referred to the original
papers �29,30,40�.

The balance laws �1b�, �2�, and �3� combined with the
constitutive assumptions given above provide nine equations
for the ten unknowns Si , vi , P1 , P3 with i=1,2 ,3 ,4. To
close the system of equations the condition v2=0 or v4=0
could be used. These conditions apply when the nonperco-

lating phases are immobile as it is often observed in experi-
ment. It turns out, however, that there exists a less restrictive
and, in our opinion, more natural self-consistent closure.

The self-consistent closure condition used in this paper
follows naturally from many limiting cases �56�. One such a
limit is the residual decoupling approximation close to hy-
drostatic equilibrium described in detail and utilized in ��30�,
Sec. 5, p. 216�. A second more general limiting case is the
limit of vanishing velocities, i.e., vi→0 for i=1,2 ,3 ,4. Fol-
lowing �56�, we formulate the self-consistent closure condi-
tion in its most general form as

0 = �R13

�1
+

R14

�1
+

R15

�1
+

R31

�3
−

R41

�4
+

M1

�1
�v1 + �1

D1

Dt
v1

+ �−
R23

�2
−

R24

�2
−

R25

�2
+

R32

�3
−

R42

�4
+

M1

�2
�v2 − �2

D2

Dt
v2

+ �−
R13

�1
+

R23

�2
−

R31

�3
−

R32

�3
−

R35

�3
−

M3

�3
�v3 − �3

D3

Dt
v3

+ �−
R14

�1
+

R24

�2
+

R41

�4
+

R42

�4
+

R45

�4
−

M3

�4
�v4 + �4

D4

Dt
v4.

�12�

This condition follows self-consistently from the constitutive
theory. It expresses the experimental observation that the
pressure difference P3− P1 depends more strongly on satura-
tions than on velocities, and that it remains nonzero even for
vanishing velocities. Adding Eq. �3� for i=2 and 3 and sub-
tracting Eq. �3� with i=1 and 4 from the result gives

�P3

�x
=

�P1

�x
+

1

2

�

�x
��aS1

−� − �bS3
−� + �P2

�S2
�−1 − �P4

�S4
�−1� .

�13�

In this form the self-consistent closure has been used in the
numerical calculation below.

III. NUMERICAL IMPLEMENTATION

A. Adaptive moving-grid technique

The coupled system of nonlinear partial differential and
algebraic equations is solved numerically using an adaptive
moving-grid solver �44,45�. Its original FORTRAN implemen-
tation was described in �44� and we follow their notation.
Space is discretized by finite differences on a nonuniformly
distributed grid. The time integration within this algorithm is
performed using the public domain solver DASSL �47�, which
is an implicit time-integration module with variable order
ranging from first to fifth and variable time steps. The first-
order variant reduces to the implicit backward Euler scheme,
while the higher-order integrators follow the backward-
differentiation-formula approach. The system of NPDE partial
differential equations is generally formulated as
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C�x,t,u,
�u

�x
� �u

�t
+ Q�x,t,u,

�u

�x
� =

�

�x
	R�x,t,u,

�u

�x
�
 ,

�14�

where C is a NPDE�NPDE matrix, x� �xL ,xR��R, t	 t0, and
u= �u1 , . . . ,uNPDE

�T is the vector of unknowns. The vectors Q
and R are both of length NPDE. They represent sinks and flux
terms.

The boundary conditions in the code are formulated in the
form

Bj�x,t�Rj = �̃ j�x,t,u,
�u

�x
,
�u

�t
� + � j�x,t,u,

�u

�x
� , �15�

for j=1, . . . ,NPDE, where Rj is the jth component of the vec-

tor R. All functions Rj, Bj, �̃ j, and � j are then evaluated at
x=xL �left boundary� and x=xR �right boundary�. The initial
conditions are specified as

u�x,t0� = u0�x� , �16�

for x� �xL ,xR�.
The user of the code has to define the matrix C, the vec-

tors Q and R, and the functions Bj, �̃ j, � j, and u0. Also, the
accuracy of the time-integration method in DASSL must be
specified by a parameter �tol �47�. An additional feature of
the code is the option to let the numerical grid automatically
adapt itself during the time integration to the changing spa-
tial profiles of the different components of u. The main idea
behind the adaptivity procedure is the equidistribution prin-
ciple. In its pure form the principle states that �xi�i=const,
where the function � is monitoring the spatial derivatives of
the vector u. This means that low values of � would result in
wider grid cells �xi, whereas higher values of �, stressing
regions in the solution with higher spatial activity, gives
more closely spaced grid cells. The equidistribution principle
holds because the integral of the monitor function � over
each grid cell �xi−1 ,xi� equals the average value of the moni-
tor function over the whole interval �xL ,xR�. The latter quan-
tity can be expressed in terms of the total integral of � di-
vided by the number grid points. As a result of this, after
approximating the integrals, the product of �xi and �i can be
kept constant for all time t� t0. The pure equidistribution
principle for a nonuniform grid is obtained by switching off
two smoothing parameters �named �S and �s� in the code.
The reader who is interested in more details is referred to
�44,48�.

It must be noted—as is shown in earlier work, for ex-
ample, in �49,50�—that adaptive grids using this basic prin-
ciple may become oscillatory in the time direction and rather
irregularly distributed in the spatial direction. This would
lead to severe numerical problems for the time-integration
scheme and finally also to a great loss of accuracy. In many
cases it can even result in a complete breakdown of the com-
putation. To prevent this from happening, two smoothing
procedures were added to the basic algorithm: one in the
time direction and the other in the spatial direction. The main
effect of the smoothing is that the spatial grid lines become
free from unwanted oscillations as a function of time
�if �s	0� and that the nonuniform grid is always “nicely”

distributed �if �s	0�. This last effect can be formulated as

�s

�s + 1



�xi+1

�xi



�s + 1

�s
, �17�

for all i and for all t� t0. Typical values for the two param-
eters in the numerical experiments are �s=T /1000 and
�s=2, where T denotes the length of the time interval of
interest. An extra improvement, compared to the original
code as described in �44�, was recently made to the adaptive
grid code. During the time integration, the monitor function
�, in which the spatial derivatives of u play a crucial role,
must remain positive because otherwise the calculated non-
uniform grid may collapse during the time integration, i.e.,
the step size may become infinitesimally small. Obviously,
this would lead to a breakdown in the computations. Intro-
ducing a regularization parameter �c	0, as is done in �44�,
guarantees the positivity of the function �. However, this
parameter �c was chosen to be fixed in time and, unfortu-
nately, depends on the scales of both u and x. Making this
parameter “adaptive” as well and time dependent, as is done
in �45,48�, serves to increase the user friendliness of the
adaptive code. We have used this improved version of the
adaptive grid code for the numerical simulations.

B. Model reformulation and approximation

The mathematical model proposed in Sec. II does not fit
exactly to the structure of the solver. Reformulations and
adaptations are necessary. The equations are

�S1

�t
+

��S1v1�
�x

= �2� S2 − S2
�

SW
� − SW

� �SW

�t
, �18a�

�S2

�t
+

��S2v2�
�x

= − �2� S2 − S2
�

SW
� − SW

� �SW

�t
, �18b�

�S3

�t
+

��S3v3�
�x

= �4� S4 − S4
�

SO
� − SO

� �SO

�t
, �18c�

�S4

�t
+

��S4v4�
�x

= − �4� S4 − S4
�

SO
� − SO

� �SO

�t
, �18d�

�W
D1

Dt
v1 +

�P1

�x
− �Wg sin 
 = �

j=1

5
R1j

�S1
�v j − v1�

−
�2v1�W

S1
� S2 − S2

�

SW
� − SW

� �SW

�t
,

�18e�

�W
D2

Dt
v2 +

�

�x
�P3 − �P2

�S2
�−1 − �aS1

−�� − �Wg sin 


= �
j=1

5
R2j

�S2
�v j − v2� +

�2v2�W

S2
� S2 − S2

�

SW
� − SW

� �SW

�t
, �18f�
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�O
D3

Dt
v3 +

�P3

�x
− �Og sin 
 = �

j=1

5
R3j

�S3
�v j − v3�

−
�4v3�O

S3
� S4 − S4

�

SO
� − SO

� �SO

�t
,

�18g�

�O
D4

Dt
v4 +

�

�x
�P1 − �P4

�S4
�−1 − �bS3

−�� − �Wg sin 


= �
j=1

5
R4j

�S4
�v j − v4� +

�4v4�O

S4
� S4 − S4

�

SO
� − SO

� �SO

�t
, �18h�

S1 + S2 + S3 + S4 = 1, �18i�

�P3

�x
=

�P1

�x
+

1

2

�

�x
��aS1

−� − �bS3
−� + �P2

�S2
�−1 − �P4

�S4
�−1� ,

�18j�

where v5=0 , R12=0 , R21=0 , R34=0 , R43=0 and the
quantities SW

� ,SO
� ,S2

� ,S4
� are defined in Eq. �7�.

1. Identification of primary unknowns

Set �18� of ten coupled nonlinear partial differential equa-
tions is reduced to nine equations by inserting Eq. �18j� into
Eqs. �18f� and �18g� to eliminate �P3 /�x. The remaining nine
unknowns are identified as u1=S1 , u2=S2 , u3=S3 , u4
=S4 , u5=v1 , u6=v2 , u7=v3 , u8=v4 , u9= P1. Equations
�18� are numbered from i=1 for Eq. �18a� to i=NPDE=9 for
Eq. �18i�.

2. Time derivatives

The time derivatives �SW /�t and �SO /�t can be expressed
by spatial derivatives as follows:

�SW

�t
= −

�SO

�t
= −

�

�x
�S1v1 + S2v2� . �19�

The first equality follows from the volume conservation
SW+SO=1 and the second is obtained by adding Eqs. �18a�
and �18b�. By this means the nonlinear terms in Eq. �7� can
be treated and also the treatment of the time derivatives in
the mass-exchange terms �6� is facilitated.

3. Regularization of saturation

The numerical solver does not respect the condition
Si	0 during iterations. To avoid overflows and complex
numbers the saturations have to be bounded away from zero.
This is achieved by replacing every occurrence of Si with

Si�x,t� → max„Si�x,t�,�S… , �20�

where �S is a small regularization parameter.

4. Flux symmetrization

Experience has shown that the algorithm performs better
if the mass fluxes are symmetrized. Therefore, the mass flux
Sivi of phase i is replaced with

Sivi =
1

2�Sivi − �
j=1

j�i

4

Sjv j
 �21�

wherever it occurs.

5. Fluxes as sources

Tests have shown that the stability and computation time
is substantially improved if first-order spatial derivatives are
identified as source terms and assigned into the vector Q
rather than as flux terms associated with the vector R in Eq.
�14�. Therefore, first-order spatial derivatives were included
into Q.

6. Volume conservation and pressure stabilization

The volume conservation �18i� is an algebraic equation
and could be used to eliminate one of the saturations. This is
done frequently in numerical schemes for the traditional
theory �51,52�. It is not done here because the incompress-
ibility of the fluids results in the absence of an equation for
the time evolution of the pressure and Eq. �18i� is a natural
candidate to remedy this situation. Solving Eq. �18i� and
eliminating a saturation would eliminate this equation and
with it the possibility to view it as an equation for P1=u9.

To turn Eq. �18i� into a partial differential equation related
to incompressibility of the fluids it is first differentiated with
respect to time to obtain

�

�t
�S1 + S2 + S3 + S4� = 0. �22�

Next, using the mass balances to replace �tSi, this equation
can be transformed into a partial differential equation with-
out time derivatives,

�

�x
�S1v1 + S2v2 + S3v3 + S4v4� = 0. �23�

This equation becomes the pressure equation by adding an
artificial second-order term for the pressure

�

�x
�S1v1 + S2v2 + S3v3 + S4v4� = �P

�2u9

�x2 , �24�

where �P�0 is a small artificial numerical parameter. This is
a well-known method for numerical treatment of the incom-
pressible Navier-Stokes equation and is there called the pres-
sure stabilization or pressure projection method �53–55�. The
influence of the artificial parameter has been checked and
beside the stabilization no change in the solution is seen for
10−20 m3 s kg−1��P�10−14 m3 s kg−1.

C. Model implementation and numerical parameters

With these preparations the model can be cast into the
form of Eq. �14�. The parameters and parameter functions
are chosen as follows: the time evolution matrix C is diago-
nal,

C = diag�1,1,1,1,1,1,1,1,0� . �25�

The elements of the source vector Q for equation
i=1, . . . ,4 �mass balances� are
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Qi =
1

2�ui
�ui+4

�x
+ ui+4

�ui

�x
− �

j=1

j�i

4 �uj
�uj+4

�x
+ uj+4

�uj

�x
�� − M̃i

�26�

with, e.g., for i=1,

M̃1 = − �2

u2 − S2
��	− �

i=1

2 �ui
�ui+4

�x
+ ui+4

�ui

�x
�


SW
� �	− �

i=1

2 �ui
�ui+4

�x
+ ui+4

�ui

�x
�
 − u1 − u2

��
i=1

2 �ui
�ui+4

�x
+ ui+4

�ui

�x
� . �27�

The elements for the momentum balance, e.g., of the perco-
lating water phase �i=5� are

Q5 =
1

��Wu1
��R15 + R12 + R13 + R14�u5 − R12u6 − R13u7

− R14u8� +
u5

u1
M̃1 +

1

�W

�u9

�x
+ u5

�u5

�x
− g sin 
 . �28�

The elements of the source vector Qi of the remaining mo-
mentum balances �i=6,7 ,8� are formulated similarly. The
source vector element for the pressure equation is

Q9 = �
i=1

4 �ui
�ui+4

�x
+ ui+4

�ui

�x
� . �29�

The flux vector contains only the artificial numerical param-
eter for the pressure,

R = �0,0,0,0,0,0,0,0,�P�T. �30�

For convenience the numerical parameters are summarized
in Table I.

IV. INITIAL CONDITIONS, BOUNDARY CONDITIONS,
AND SIMULATION PARAMETERS

A. Boundary conditions

Within this work we present numerical simulations of
three laboratory experiments. All of them are carried out
with a column containing a homogeneous porous medium.
Its pore space is filled with oil and water. It has impermeable
walls on all sides and hence its boundary conditions in one
dimension are expressed mathematically as

vi�xL,t� = 0, �31�

vi�xR,t� = 0, �32�

for i=1, . . . ,4. Due to the incompressibility of the fluids, the
pressure has to be fixed at one point, e.g., the left boundary,

P1�xL,t� = 0. �33�

In the algorithm, the boundary conditions are specified
through the three vectors B�x , t�, �(x , t ,u�x , t� ,�xu �x), and

�̃(x , t ,u�x , t� ,�xu �x ,�tu �x) on both sides x� �xL ,xR�. Rewrit-
ing the boundary conditions �31�–�33� in this form results in

B�xL,t� = �0,0,0,0,0,0,0,0,0�T, �34a�

B�xR,t� = �0,0,0,0,0,0,0,0,0�T, �34b�

for the vector corresponding to flux boundary conditions, and

�„xL,t,u�xL,t�,�xu�x=xL
… = „0,0,0,0,u5�xL,t�,u6�xL,t�,

u7�xL,t�,u8�xL,t�,u9�xL,t�…T,

�35a�

�„xR,t,u�xR,t�,�xu�x=xR
… = „0,0,0,0,u5�xR,t�,u6�xR,t�,

u7�xR,t�,u8�xR,t�,0…T, �35b�

FIG. 1. Stationary saturation profiles S2�x�, SW�x�, and
1−S4�x� functions of x reached after t=150�r �shown as solid lines�.
The dashed lines are the quasistatic profiles obtained in ��30�, Fig.
6�. The initial conditions are shown as dotted lines.

TABLE I. Numerical parameters used for all simulations.

Parameter Value

npts 51

�s 5.0

�s 2.0

�tol 10−5

�P 10−18 m3 s /kg

�S 10−5
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for the vector corresponding to Dirichlet and von Neumann
boundary conditions. When there is no boundary condition

specified the equations of motion themselves are solved at
the boundary. At the left boundary this leads to

�̃i„xL,t,u�xL,t�,�xu�x=xL
,�tu�x=xL

… = � �ui

�t �
x=xL

+
1

2�ui�xL,t�� �ui+4

�x �
x=xL

+ ui+4�xL,t�� �ui

�x �
x=xL

− �
j=1

j�i

4 �uj�xL,t�� �uj+4

�x �
x=xL

+ uj+4�xL,t�� �uj

�x �
x=xL

�� − M̃i�xL,t� , �36a�

for i=1,3; to

�̃i„xL,t,u�xL,t�,�xu�x=xL
,�tu�x=xL

… = � �ui

�t
�

x=xL

+ ui�xL,t�� �ui+4

�x
�

x=xL

+ ui+4�xL,t�� �ui

�x
�

x=xL

+ M̃i−1�xL,t� , �36b�

for i=2,4; and to

�̃i„xL,t,u�xL,t�,�xu�x=xL
,�tu�x=xL

… = 0, �36c�

for i=5, . . . ,9. At the right boundary it leads to

�̃i„xR,t,u�xR,t�,�xu�x=xR
,�tu�x=xR

… = � �ui

�t �
x=xR

+
1

2�ui�xR,t�� �ui+4

�x �
x=xR

+ ui+4�xR,t�� �ui

�x �
x=xR

− �
j=1

j�i

4 �uj�xR,t�� �uj+4

�x �
x=xR

+ uj+4�xR,t�� �uj

�x �
x=xR

�� − M̃i�xR,t� , �37a�

for i=1,3; to

�̃i„xR,t,u�xR,t�,�xu�x=xR
,�tu�x=xR

… = � �ui

�t
�

x=xR

+ ui�xR,t�� �ui+4

�x
�

x=xR

+ ui+4�xR,t�� �ui

�x
�

x=xR

+ M̃i−1�xR,t� , �37b�

for i=2,4; to

�̃i„xR,t,u�xR,t�,�xu�x=xR
,�tu�x=xR

… = 0, �37c�

for i=5, . . . ,8; and to

�̃9„xR,t,u�xR,t�,�xu�x=xR
,�tu�x=xR

… = �
j=1

4 �uj�xR,t�� �uj+4

�x �
x=xR

+ uj+4�xR,t�� �uj

�x �
x=xR

� , �37d�

for i=9. Note that here the symmetrization �21� was not used
for the nonpercolating phases. This contributes to a further
reduction in numerical oscillations.

B. Initial conditions

The three simulations differ in the initial conditions. Ini-
tial condition A is taken from �30�. Initial condition B

corresponds to a situation after primary imbibition where
50% of the pore space is filled with water. Initial condition C
represents a situation where 50% of the pore space is filled
with water after primary drainage. Initial condition D models
a situation with 30% water after primary imbibition and ini-
tial condition E models one with 30% water after primary
drainage. For the initial conditions B–E the residual decou-
pling approximation is used to calculate the amount of per-
colating and nonpercolating phases. The different initial con-
ditions are summarized in Table II.
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C. Simulation parameters

The fluid, rock, and column properties are taken from
�30�. These are �=0.34, SWdr=0.15, SOim=0.19, �2=4,
�4=3, �W=1000 kg m−3, �O=800 kg m−3, �=0.52,
�=0.90, �=1.5, �=3.5, �a=1620 Pa, �b=25 Pa,
P2

�=2500 Pa, P4
�=400 Pa, xL=0 m, and xR=4 m. Values

for the resistance coefficients were not given or needed in
�30�, because only stationary solutions were addressed there.
To obtain realistic time scales the resistance coefficients are
chosen in a way that the maximum values of the relative
permeabilities, which can be identified in the residual decou-
pling approximation, are O�1�.

This leads to

R1 =
2�W�2

k
, �38a�

R3 =
2�O�2

k
, �38b�

with the abbreviations R1=R13+R14+R15 and R3=R31+R32
+R35. Realistic values for the viscosities are
�W=0.001 kg m−1 s−1 and �O=0.001 kg m−1 s−1 and for
the permeability k=1�10−12 m2 �e.g., �52��. Assuming that
the coupling is of the same magnitude for all the viscous
couplings of the percolating phases, one obtains R15=R13

(a) (b)

FIG. 2. Stationary saturation profiles and initial conditions for simulation 2. �a� shows the profiles after raising the column from
horizontal to vertical position, while �b� shows the stationary profiles at the end of simulation 2. Solid curves represent saturation profiles
corresponding to initial conditions D and dashed curves correspond to initial conditions E. The dashed curves in �b� are not visible because
they coincide with the solid curves. In �a� initial saturation profiles for case D are shown as dashed-dotted vertical lines and for case E as
dotted lines. In �b� the dashed-dotted curves are identical to the solid curves in �a�. The dotted curves in �b� are identical to the dashed curves
in �a�. In �a� there is a dashed-dotted vertical line at S2=0.001, a dotted vertical line at 1−S4=0.999, and the vertical line at SW=0.3 is a
superposition of a dotted and a dashed-dotted line.

TABLE II. The five different initial conditions for which the equations are solved. In the initial conditions
A–C 50% of the pore volume of the column is filled with water and 50% with oil. In initial conditions D and
E 30% are filled with water and 70% with oil.

A B C D E

u1
0�x� 0.450 0.499 0.354 0.299 0.151

u2
0�x� 0.050 0.001 0.146 0.001 0.149

u3
0�x� 0.470 0.321 0.499 0.557 0.699

u4
0�x� 0.030 0.179 0.001 0.143 0.001

u5
0�x� 0.0 0.0 0.0 0.0 0.0

u6
0�x� 0.0 0.0 0.0 0.0 0.0

u7
0�x� 0.0 0.0 0.0 0.0 0.0

u8
0�x� 0.0 0.0 0.0 0.0 0.0

u9
0�x� 0.0 0.0 0.0 0.0 0.0

DOSTER, ZEGELING, AND HILFER PHYSICAL REVIEW E 81, 036307 �2010�

036307-8



=R14=0.77�108 kg m−3 s−1 and R35=R31=R32=0.77�108

kg m−3 s−1. For the viscous coupling terms between the non-
percolating phases and the soil, R25 and R45, no measure-
ments or estimates are available so far. It seems reasonable to
assume that these resistances are much larger than the vis-
cous resistances of the percolating phases R15 and R35. Spe-
cifically, R25=1016 kg m−3 s−1 and R45=1016 kg m−3 s−1 are
chosen in subsequent simulations. Assuming that the
Onsager relation holds, the viscous coupling parameters
are R23=R32=0.77�108 kg m−3 s−1 and R41=R14=0.77
�108 kg m−3 s−1. The magnitudes of R24 and R42 have al-
most no impact on the solutions presented here and are cho-
sen to be R24=R42=0.77�108 kg m−3 s−1. The characteristic
time for raising the column is �r=104 s=2 h, 46 min, 40 s.

V. SIMULATION RESULTS

Three laboratory experiments on a closed column have
been simulated. The results are reported in this section. The
three experiments differ in the way the column is moved in a
gravitational field, in particular how the angle 
 of the col-
umn toward gravity changes with time. We emphasize again
that the results presented here are approximate. Although the
algorithm discussed above has been extensively tested on
many problems �50� its accuracy cannot be guaranteed for
the problem at hand.

A. Simulation 1: Raising a closed column

In the first simulation the closed column is initially placed
horizontally so that the angle 
 between the column orienta-
tion and the direction perpendicular to gravity is zero, 
�0�
=0. The initial conditions for saturations, velocities, and
pressure are those specified in column A in Table II. Because
body forces and gradients of the stress tensors are absent the
initial state is a stationary solution. The system could remain
in its initial state forever. After the initial stationary state has
been prepared the column is rotated to a vertical position
following the protocol


�t� = arcsin�1

2
	tanh� t

�r
− 5� + 1
� , �39�

for 0
 t
150�r. As the column is rotated gravity induces a
flux inside the column. Water starts to flow downward and
oil upward. Hence, an imbibition process takes place in the

lower part of the column while a drainage process takes
place in the upper part. Within the transition zone the process
changes between imbibition and drainage as a function of
time and position. In the region, where the column is im-
bibed, nonpercolating oil is produced by snap-off and
breakup of ganglia. The saturation of nonpercolating water
S2 is reduced, because nonpercolating water coalesces with
percolating water. In the drainage regions nonpercolating
water is produced and the saturation S3 of percolating oil
increases. Simultaneous drainage and imbibition processes
are generally difficult to simulate within the traditional
theory because different capillary pressure and relative per-
meability functions have to be known and specified in ad-
vance. The present theory does not need any adjusting of
such parameter functions because such process changes are
intrinsically contained within it �56�.

After the column has been raised the flow processes will
eventually come to rest and the system reaches a new sta-
tionary state. In our simulation this happens after roughly
t�150�r. The resulting stationary saturation profiles are
shown as solid curves in Fig. 1. The initial saturation profiles
are represented as dotted vertical lines. The profiles show a
clear separation of the imbibition and drainage zone. Note
also that the numerical results show inflection points at
x�2.1 m.

For comparison the quasistatic analytical solution ob-
tained in �30� has been included into Fig. 1 as the dashed
profiles. These were obtained from the same initial condi-
tions as the numerical profiles. The two sets of profiles are
clearly different. We attribute this difference to several fac-
tors. First, the quasistatic limit approximation assumes that
the velocities of the percolating phases vanish. However, ve-
locities up to vi�10−3 m /s occur during the approach to
equilibrium and hence this assumption did not hold in our
numerical simulation. Second, the analytical calculation does
not need to consider the viscous resistance coefficients Rij. In
particular the difference between R25,R45 and the other coef-
ficients played no role. Third, the boundary conditions do not
enter into the dynamics of the quasistatic calculation. Note
that the quasistatic profiles show kinks at x�2.4 m instead
of inflection points.

B. Simulation 2: Rotating a closed column upside down

In the second simulation the column is again initially ori-
ented horizontally. The protocol for the angle 
 is now


�t� =�
arcsin�1

2
	tanh� t

�r
− 5� + 1
� , t � 50�r

arcsin	− tanh� t

�r
− 105�
 , 50�r 
 t � 150�r

arcsin	tanh� t

�r
− 205�
 , t � 150�r.

� �40�

NUMERICAL SOLUTIONS OF A GENERALIZED THEORY … PHYSICAL REVIEW E 81, 036307 �2010�

036307-9



After the preparation, the column is first rotated to a vertical
orientation as in simulation 1. This is represented by the first
line in Eq. �40�. Next one waits for the sample to reach a
stationary state until time t�100�r as seen in the second line
of Eq. �40�. Then the sample is rotated upside down by 180°.
Again the system is given time to reach a stationary state
until t�200�r at which point it is rotated again by 180°.

Simulation 2 was carried out with this protocol for two
different initial conditions. The two initial conditions are
those specified in columns D and E of Table II. For both
initial conditions the total water content was only 30%, not
50% as in simulation 1. As a consequence the stationary state
is reached faster than in simulation 1 and it suffices to wait
until t=100�r for the first rotation to start.

The results for both initial conditions are summarized in
Fig. 2. Figure 2�a� shows the stationary profiles reached after
raising the column from horizontal to vertical, while Fig.
2�b� shows the profiles reached at the end of the simulation.
Solid curves are the profiles corresponding to initial condi-
tion D. Dashed curves represent saturation profiles corre-
sponding to initial condition E. The dashed curves in Fig.
2�b� are not visible because they coincide with the solid
curves. Initial saturation profiles are shown as dashed-dotted
vertical straight lines in Fig. 2�a� for case D, while initial
conditions E are shown as dotted lines. Note that the vertical
line at SW=0.3 is a superposition of dotted and dashed-dotted
lines. Note also that there is a dotted vertical line at
1−S4=0.999 and a dashed-dotted line at S2=0.001. The sta-
tionary �solid and dashed� curves in Fig. 2�a� become the
initial conditions for the twofold rotation by 180° illustrated
in Fig. 2�b�. Thus, the solid and dashed curves in Fig. 2�a�
are identical with the dashed-dotted and dotted curves in Fig.
2�b�.

Figure 2�a� shows first and foremost that the stationary
profiles depend sensitively on the initial conditions for the
nonpercolating phases. Initial conditions D and E both have
SW=0.3 and are indistinguishable within the traditional

theory. Consequently, the traditional theory would predict the
same result for both types of initial conditions. In case D
nonpercolating water is produced while it is annihilated in
case E. Similarly, in case D nonpercolating oil is annihilated
while percolating oil is produced. Figure 2�a� shows also that
the total amount of nonpercolating fluids left after a displace-
ment process can be very different depending on their initial
distributions.

Figure 2�b� illustrates that multiple rotations by 180° ul-
timately result in a saturation profile that is a combination of
a simple imbibition profile in the lower part and a simple
drainage profile in the upper part. In other words the result-
ing profile �represented by the solid and superposed dotted
curves� may be viewed as a kind of hybrid capillary pressure
curve. Near the upper boundary the process is always a
drainage while it is always an imbibition process near the
lower boundary.

Figure 3 shows the time evolution of the saturation pro-
files from t=200�r to t=300�r. To avoid overcrowding the
figure the six time instants are shown in Figs. 3�a� and 3�b�.
As the amount of water decreases in the region
0 m
x
1 m, nonpercolating water is produced and nonper-
colating oil is reduced significantly. In the lower part
�1 m
x
4 m� slight imbibition takes place, which results
in a small increase in nonpercolating oil and a decrease in
nonpercolating water. In Fig. 3�b�, i.e., toward the end of the
process, the imbibition takes place only in the lowest quarter
�3 m
x
4 m� of the column. The imbibition is complete in
the sense that nonpercolating water is completely consumed
and oil remains only as nonpercolating oil. In the upper part
of the column �0 m
x
3 m� a drainage process increases
nonpercolating water and decreases nonpercolating oil. We
emphasize that in the middle region drainage and imbibition
occur consecutively at a given position. This poses a difficult
problem within the traditional theory for two reasons. First, it
requires the specification of multiple capillary pressure and
relative permeability curves in advance without experimental

(a) (b)

FIG. 3. Transient saturation profiles in simulation 2 after the second rotation of the column. �a� shows profiles at t=200�r �dotted curves�,
t=208�r �solid curves�, and t=210�r �dashed curves�. �b� shows profiles at t=214.5�r �dashed curves�, t=219�r �solid curves�, and
t=300�r �dotted curves�.
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knowledge and second it leads to computationally cumber-
some case selections.

C. Simulation 3: Raising and lowering a closed column

As in the previous simulations the column is first raised
from a horizontal to a vertical position. After reaching a sta-
tionary profile around t�100�r the column is rotated back to
its initial horizontal position. The final stationary state is
reached at t�200�r. The protocol for simulation 3 is


�t� = �arcsin�1

2
	1 + tanh� t

�r
− 5�
� , t � 50�r

arcsin�1

2
	1 − tanh� t

�r
− 105�
� , t � 50�r.�

�41�

Simulation 3 was carried out with this protocol for three
different initial conditions. The three initial conditions are
those specified in columns A–C of Table II. For all initial
conditions the water content was 50%.

The final stationary profiles for all three initial conditions
are summarized in Fig. 4. Solid curves show the final profiles
for case A, dotted curves for case B, and dashed curves for
case C. The corresponding initial conditions are depicted by
straight lines of the same style. Note that the line SW=0.5 is
a triple curve because in all three initial conditions the col-
umn is filled with 50% water. Note also that there is a dashed
line at S2=0.001 and a dotted line at 1−S4=0.999.

Figure 4 shows that the final profiles are not constant.
This contrasts with the traditional theory where
SW=SO=0.5 for all x would be the final stationary result.
Irreversible hysteretic switching between different flow pro-
cesses in the present theory prevents the system to return to
its original state. The fluids come to rest before the nonper-
colating phases can return to their initial amount. A station-

ary profile is reached showing the same separation into a
drainage dominated zone on the left and an imbibition domi-
nated zone on the right. The two zones are separated by a
transition zone characterized by temporal switching between
imbibition and drainage. Nonmonotonous nonpercolating
saturations are observed in this transition zone. If the raising
and lowering of the column is repeated several times the
profiles approach a limiting profile. These observations re-
semble the observations made in simulation 2.

The solid line in Fig. 4 corresponds to the same initial
conditions �type A� that were used also for the solid profiles
in Fig. 1. Combined with the observations in the other two
simulations this highlights the large degeneracy of equilib-
rium saturation profiles �i.e., profiles for vi=0�.

To illustrate the time evolution of the saturations and the
adaptivity of the algorithm the trajectories of the grid points
are shown in Fig. 5. Because the grid points assemble near
large gradients, a high density of trajectories indicates a satu-
ration front. The time scale is logarithmic because saturation
fronts start to move rapidly through the column when the
column orientation is changed. They slow down strongly as
they approach the stationary profiles. The plot of the upper
graph is shifted by t0=104�r to better visualize the dynamics
after the column has been lowered again.

At the beginning the saturation profiles are homogeneous
and the grid points are distributed equidistantly through the
whole domain. As the column is raised a water front is mov-
ing from the bottom of the column toward the center of the
column and an oil front is moving down from the top until
both fronts meet in the middle. Due to the wetting properties
of the two fluids the water front is steeper. This results in a
higher density of grid points in the range 2 m
x
4 m,
t�5�r. At t�20�r the stationary profile �the same as the
solid lines in Fig. 1� is almost reached and the grid points do
not move anymore. When the column is lowered down again
�t�1.05�r� the two fronts move back again. After reaching
the boundaries the gradients in the saturations are reduced by
capillary diffusion. Finally, only the step at x�2.5 m �com-

FIG. 4. Initial and final saturation profiles for simulation 3.
Straight lines are initial profiles while curves are final profiles.
Three simulations are shown corresponding to the initial conditions
of columns A �solid line�, B �dotted line�, and C �dashed line� in
Table II. Note that there is a dashed line at S2=0.001, a dotted line
at 1−S4=0.999, and the solid line at SW=0.5 coincides with a
dashed and a dotted line.

FIG. 5. Trajectories of the grid points during the raising of a
closed column in a gravitational field and lowering it again for the
initial conditions of type A. The time axis is scaled logarithmically.
For the upper graph the plot is shifted by t0=104�r to better depict
the dynamics after lowering the column.
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pare with solid curves in Fig. 4� remains, which results in an
accumulation of the grid points at that position.

VI. CONCLUSION

Numerically approximate but convergent solutions were
found for a recent mathematical model for multiphase flow
in porous media, which takes into account the difference of
percolating and nonpercolating, trapped or immobile fluid
regions. The system of equations was closed self-consistently
by the capillary pressure-saturation relation, which was ob-
tained as an output of the residual decoupling approximation
already in �40�. Displacement processes with simultaneous
drainage and imbibition can be simulated without difficulty
in contrast to the widely used traditional theory. Initial and

boundary value problems for raising and lowering a closed
column in a gravitational field were used as illustrations. The
initial and boundary value problems can be realized in ex-
periments and can be used to test the extended theory. The
theory predicts the spatial distribution of trapped blobs and
ganglia after a water flood. The results exhibit irreversibility
and hysteresis as expected from experiment.
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