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Abstract

This paper challenges the foundations of the macroscopic capillary pressure concept. The capillary pressure function, as

it is traditionally assumed in the constitutive theory of two-phase immiscible displacement in porous media, relates the

pressure difference between nonwetting and wetting fluid to the saturation of the wetting fluid. The traditional capillary

pressure function neglects the fundamental difference between percolating and nonpercolating fluid regions as first

emphasized in R. Hilfer [Macroscopic equations of motion for two phase flow in porous media, Phys. Rev. E 58 (1998)

2090]. The theoretical approach proposed here starts from residual saturations as the volume fractions of nonpercolating

phases. The resulting equations of motion open the possibility to describe flow processes where drainage and imbibition

occur simultaneously. The theory predicts hysteresis and process dependence of capillary phenomena. The traditional

theory is recovered as a special case in the residual decoupling approximation. Explicit calculations are presented for

quasistatic equilibrium profiles near hydrostatic equilibrium. The results are found to agree with experiment.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction and formulation of the problem

Already 65 years ago Leverett introduced the capillary pressure–saturation relation PcðSWÞ into the
macroscopic description of capillarity in porous media [1]. Despite its well-known limitations, this capillary
pressure function has, in various disguises, remained the cornerstone of the theory of two phase flow in porous
media until today [2–8].

My objective in this paper is to challenge the role of PcðSWÞ as the central constitutive parameter. An
alternative constitutive theory is presented in this paper. It is based, like the traditional theory, on volume
fractions as primary unknowns, but does not introduce capillary pressure or relative permeabilities as
constitutive parameters. Of course, the present theory of capillarity does contain the traditional theory as a
special case, as will be seen below. Residual saturations of trapped fluids and their spatiotemporal changes are
the basic new ingredient that distinguish the theory proposed here from existing ones. Existing theories, with
the exception of [9–11], have neglected residual saturations as unknowns. My objective in this paper is to show
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that a theory that includes residual saturations is both simpler and more comprehensive than the traditional
theory.

Drainage and imbibition processes often occur simultaneously in realistic two phase flows, and they are accomp-
anied by hysteresis effects. Explicit calculations for capillary hysteresis loops have remained a difficult problem, and
there exists a large literature on the subject [9–26]. It is therefore appropriate to briefly review this literature.

Great attention was paid at first to the so-called Preisach model of independent domains [12–15] that was
adapted to pore water hysteresis by Poulovassilis [16]. Later it was found that independent domain models
cannot account in general for the hysteretic behaviour of pore water [17,18]. Other phenomenological
approaches were based upon a similarity hypothesis [19–22]. Relative permeability hysteresis has been
modeled along similar lines [23]. In such models boundary drainage or imbibition curves are rescaled. All these
approaches are based on the traditional constitutive theory, and do not question the validity of the capillary
pressure concept. Modern approaches, on the other hand, tend to modify the constitutive assumptions on a
more basic level, and the present paper makes no exception.

A recent suggestion has been to modify the classical capillary pressure function with an additive term
proportional to the rate of saturation change (see [24] and references therein). Another longstanding suggestion has
been to introduce interfacial surface areas into the list of primary unknowns [9–11,25,26]. Other approaches have
included even more variables such as interfacial velocities, entropies or mass densities [27]. However, these latter
approaches suffer from a proliferation of unknowns and constitutive relations, and these constitutive relations are
difficult to obtain. Finally, it should be mentioned that another approach to capillary hysteresis has been to
abandon the macroscopic description in favour of microscopic (i.e., pore scale) network modeling [28,29].

An important motivation for searching alternative approaches are the unresolved problems with the
traditional macroscopic theory that was introduced roughly 65 years ago [1,30,31], and has remained
practically unchanged ever since. It is therefore adequate to remind the reader of some problems with the
traditional theory. The biggest problem is the nonuniqueness of the capillary pressure function, and its
inability to account for spatiotemporal changes of residual saturations. The traditional theory tacitly assumes
that fluids trapped in pendular rings, ganglia or blobs behave in the same way as fluids that percolate to the
sample surface. It implies that in hydrostatic equilibrium, when all velocities vanish, the pressures are
everywhere hydrostatic, even in the trapped fluids. This is clearly not the case. Other problems, besides
multivaluedness and hysteresis, arise from dynamic effects, and from the fact that there is frequently a
confusion between pressures defined on the pore scale with macroscopically averaged pressure.

The approach followed in this paper was first introduced in Refs. [9–11,32]. It is based on the insight that
the main effect of capillarity is the distinction between percolating and nonpercolating (trapped) fluid phases
[9–11]. Percolation concepts are also crucial for the calculation of absolute permeabilities [33–40]. The fluids
flow hydrodynamically in the percolating regions while the trapped fluids are kept in place by capillary forces.
Trapped fluid can only move by viscous drag or through coalescence with percolating fluid regions.

Before defining the fundamental concepts of percolating and nonpercolating fluid phases in Section 3.1, it is
appropriate to recall the constitutive assumptions of the traditional theory. This will be done in Section 2. The
new theory is then presented in Section 3 following exactly the same outline as that of the traditional theory in
Section 2. In this way the reader can clearly see the similarities and differences between the constitutive
assumptions. Sections 4–6 are devoted to the analysis of the new equations. In Section 4 the special case of
hydrostatic equilibrium is studied. Section 5 presents an approximation called residual decoupling
approximation (RDA). It turns out that the traditional theory can be recovered from the new theory in the
RDA. Finally, the last section presents solutions for quasistatic saturation profiles. It should be noted, and
will be seen below, that the new theory, despite introducing two additional unknowns, requires fewer
constitutive parameters than the traditional theory.

2. Theoretical formulation of the traditional theory

2.1. Phase structure

Consider the pore space (called P) of a porous sample S ¼ P [M with a rigid solid matrix (called M).
Within the traditional macroscopic theory one distinguishes two phases: a wetting phase, called water and
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denoted as W, plus a nonwetting phase, called oil and denoted as O. From the macroscopic viewpoint the
microscopic fluid configuration becomes smeared out. Hence the phases W and O are viewed as being
simultaneously present at each macroscopic position x.
2.2. Balance laws for mass, momentum and volume

The traditional theory starts from the fundamental balance laws of continuum mechanics for water W and
oil O. Recall the law of mass balance in differential form

qðfiRiÞ

qt
þ r � ðfiRiviÞ ¼Mi, (1)

where Riðx; tÞ;fiðx; tÞ; viðx; tÞ denote mass density, volume fraction and velocity of phase i ¼W;O as functions
of position x 2 S � R3 and time t 2 Rþ. Exchange of mass between the two phases can be described through
mass transfer rates Mi giving the amount of mass by which phase i changes per unit time and volume. Mass
exchange terms are required when chemical reactions take place.

Momentum balance for the two fluids requires in addition

fiRi

Di

Dt
vi � fir � Si � fiFi ¼ mi � viMi, (2)

where Si is the stress tensor in the ith phase. Fi is the body force per unit volume acting on the ith phase, mi is
the momentum transfer into phase i from all the other phases, and Di=Dt ¼ q=qtþ vi � r denotes the material
derivative for phase i ¼W;O.

Defining the saturations Siðx; tÞ as the volume fraction of pore space P filled with phase i one has the
relation fi ¼ fSi where f is the porosity of the sample. Expressing volume conservation fW þ fO ¼ f in
terms of saturations yields

SW þ SO ¼ 1. (3)

In order to get the traditional theory these balance laws for mass, momentum and volume have to be
combined with specific constitutive assumptions for Mi; mi; Fi and Si.

2.3. General constitutive assumptions

As a first approximation it is usually assumed that the porous medium is macroscopically homogeneous

fðxÞ ¼ f ¼ const (4)

although this assumption can be relaxed, and rarely holds in practice [41]. Let us further assume that the fluids
are incompressible so that

RWðx; tÞ ¼ RW, (5a)

ROðx; tÞ ¼ RO, (5b)

where the constants RW; RO are independent of x and t. One assumes next that the stress tensor of the fluids is
diagonal

SW ¼ �PW1, (6a)

SO ¼ �PO1, (6b)

where PW;PO are the fluid pressures. Realistic subsurface flows have low Reynolds numbers so that the
inertial term

Di

Dt
vi ¼ 0 (7)
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can be neglected in the momentum balance equation (18). It is further assumed that the body forces

FW ¼ RWg, (8a)

FO ¼ ROg (8b)

are given by gravity. As long as there are no chemical reactions between the fluids the mass transfer rates
vanish, so that

MW ¼ �MO ¼ 0 (9)

holds.

2.4. Viscous drag

Momentum transfer between the fluids and the rigid walls of the porous medium is assumed to be governed
by viscous drag in the form

mW ¼ �
mWf2

W

k kr
WðSWÞ

vW, (10a)

mO ¼ �
mOf

2
O

k kr
OðSWÞ

vO, (10b)

where mW;mO are the constant fluid viscosities, k is the absolute permeability, and kr
WðSWÞ; k

r
OðSWÞ are the so-

called relative permeabilities of water and oil.

2.5. Capillarity

Inserting the constitutive assumptions into the general balance laws (1)–(3) yields nine equations for 10
unknowns SW;SO;PWPO,vW; vO. An additional equation is needed. Based on observations of capillary rise in
regular packings [42] it was argued in Ref. [1] that the pressure difference between oil and water should, in
general, depend only upon saturation

PO � PW ¼ sWOkðSWÞ ¼ PcðSWÞ, (11)

where sWO is the oil–water interfacial tension and kðSWÞ is the mean curvature of the oil–water interface. This
assumption has remained the cornerstone of the theory of macroscopic capillarity for 60 years, and it is being
challenged here. The nonlinear constitutive parameter function PcðSWÞ is called the capillary pressure–satura-
tion relation and it is supposed to describe the macroscopic effect of capillarity in hydrostatic equilibrium
(without flow). The functions PcðSWÞ and kr

WðSWÞ; k
r
OðSWÞ are fit functions obtained from experiment.

Popular fits have the general form [8, p. 56, 75]

PcðSWÞ ¼ Pyc
1� Sn1

e

Sn2
e

� �n3

; Pc40, (12a)

kr
WðSWÞ ¼ kr

W
y
Sn4

e ½1� ð1� Sn5
e Þ

n6 �n7 , (12b)

kr
OðSWÞ ¼ kr

O
y
ð1� Sn8

e Þ
n9ð1� Sn10

e Þ
n11 , (12c)

where Se is the effective saturation defined by

Se ¼
SW � SWi

1� SOr � SWi

(13)

and Pyc ; k
r
W
y; kr

O
y;SWi;SOr and n1; . . . ; n11 are 16 fit parameters. Note the restriction to Pc40. Frequently the

number of parameters is reduced on the basis of calculations for capillary tube models. In the popular van-
Genuchten model one assumes [8] kr

W
y
¼ kr

O
y
¼ 1, n1 ¼ n2 ¼ n5 ¼ n10 ¼ n=ðn� 1Þ, n3 ¼ 1=n, n6 ¼ 1� ð1=nÞ,

n7 ¼ 2, n8 ¼ 1 and n11 ¼ 2ðn� 1Þ=n where n 2 R.
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3. Theoretical formulation of the new theory

3.1. Phase structure

The necessity to distinguish between percolating and nonpercolating fluid regions arises from the fact that in
static equilibrium the pressure can become hydrostatic only in those fluid regions that are connected (or
percolating) to the sample boundary [9–11]. Each of the two fluids W;O consists of disjoint and
pathconnected subsets (regions) Wi;Oi. More precisely, one has

W ¼
[NW

i¼1

Wi, (14a)

O ¼
[NO

i¼1

Oi, (14b)

where the subsets Wi;Oi are mutually disjoint, and each of them is pathconnected. A set is called
pathconnected if any two of its points can be connected by a path contained inside the set. The sets are called
mutually disjoint if Oi \Oj ¼ ; and Wi \Wj ¼ ; holds for all iaj. The integers NW;NO give the total
number of pathconnected subsets for water (resp. oil). These numbers vary with time, as do the regionsWi;Oi.

Now define percolating (F1;F3) and nonpercolating (F2;F4) fluid regions by classifying the subsets Wi;Oi as
to whether they have empty or nonempty intersection with the sample boundary qS. More formally, define

F1 ¼
[NW

i¼1
qWi\qSa;

Wi, (15a)

F2 ¼
[NW

i¼1
qWi\qS¼;

Wi, (15b)

F3 ¼
[NO

i¼1
qOi\qSa;

Oi, (15c)

F4 ¼
[NO

i¼1
qOi\qS¼;

Oi, (15d)

so that F1 is the union of all regions Wi, and F3 is the union of all regions Oi, that have nonempty intersection
with the sample boundary qS. Similarly F2 is the union of all regions Wi that have empty intersection with qS,
and similarly for F4. In this way each point in P belongs to one of four regions Fi, i ¼ 1; 2; 3; 4. This results in a
total of four fluid phases called percolating (resp. nonpercolating) water, and percolating (resp.
nonpercolating) oil. The index i ¼ 5 will be used for the rigid matrix (¼rock).

3.2. Balance laws for mass, momentum and volume

The approach presented here is based on the concept of volume fractions combined with the distinction
between percolating and nonpercolating phases as introduced in Refs. [9–11] and discussed in Section 3.1. The
volume fractions of the subsets Fi � S; i ¼ 1; 2; 3; 4 and M � S are denoted as fiðx; tÞ. Let f denote the
porosity (volume fraction of P). Volume conservation implies the relations

f1 þ f2 þ f3 þ f4 þ f5 ¼ 1, (16a)

S1 þ S2 þ S3 þ S4 ¼ 1, (16b)
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1� f ¼ f5, (16c)

where fi ¼ fSi ði ¼ 1; 2; 3; 4Þ are volume fractions, and Si are saturations. The water saturation is defined as
SW ¼ S1 þ S2, and the oil saturation as SO ¼ S3 þ S4.

The general law of mass balance in differential form reads (i ¼ 1; 2; 3; 4)

qðfiRiÞ

qt
þ r � ðfiRiviÞ ¼Mi, (17)

where Riðx; tÞ;fiðx; tÞ; viðx; tÞ denote mass density, volume fraction and velocity of phase i ¼W;O as functions
of position x 2 S � R3 and time t 2 Rþ. Exchange of mass between the two phases is described by mass
transfer rates Mi giving the amount of mass by which phase i changes per unit time and volume. The law of
momentum balance is formulated as (i ¼ 1; 2; 3; 4)

fiRi

Di

Dt
vi � fir � Si � fiFi ¼ mi � viMi, (18)

where Si is the stress tensor in the ith phase, Fi is the body force per unit volume acting on the ith phase, mi is
the momentum transfer into phase i from all the other phases, and Di=Dt ¼ q=qtþ vi � r denotes the material
derivative for phase i ¼W;O.

3.3. General constitutive assumptions

For simplicity the porous medium is assumed to be macroscopically homogeneous. This assumption is
formulated as

fðxÞ ¼ f ¼ const (19)

although it is rarely valid in practice [41]. Realistic subsurface flows have low Reynolds numbers so that the
inertial term

Di

Dt
vi ¼ 0 (20)

can be neglected in the momentum balance equation (18). For incompressible fluids one has

R1ðx; tÞ ¼ RW, (21a)

R2ðx; tÞ ¼ RW, (21b)

R3ðx; tÞ ¼ RO, (21c)

R4ðx; tÞ ¼ RO, (21d)

independent of x; t.

3.4. Viscous drag

The momentum transfer into phase i from all the other phases is assumed to be a simple viscous drag,

mi ¼
X5
j¼1

Rijðvj � viÞ, (22)

where the resistance coefficient Rij quantifies the viscous coupling between phase i and j. For the rigid rock
matrix v5 ¼ 0. Hence �Ri5vi is the momentum transfer from the wall into phase i. Then

m1 ¼ R13ðv3 � v1Þ þ R14ðv4 � v1Þ � R15v1, (23a)

m2 ¼ R23ðv3 � v2Þ þ R24ðv4 � v2Þ � R25v2, (23b)

m3 ¼ R31ðv1 � v3Þ þ R32ðv2 � v3Þ � R35v3, (23c)
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m4 ¼ R41ðv1 � v4Þ þ R42ðv2 � v4Þ � R45v4, (23d)

where R12 ¼ 0 and R34 ¼ 0 was used because there is no common interface and hence no direct viscous
interaction between these phase pairs. Each Rij is a 3� 3-matrix. In practice viscous coupling terms between
the two fluid phases are often neglected.

3.5. Capillarity

The body forces are assumed to be given by gravity plus capillary forces

F1 ¼ R1g, (24a)

F2 ¼ R2gþ FcW, (24b)

F3 ¼ R3g, (24c)

F4 ¼ R4gþ FcO, (24d)

where the capillary body forces FcW;FcO are responsible for keeping the trapped fluids inside the medium.
They are assumed to be gradients of capillary potentials

FcW ¼ �rPcW, (25a)

FcO ¼ �rPcO. (25b)

The capillary potentials PcW;PcO are defined as

PcW ¼ P�a �PaS�a1 , (26a)

PcO ¼ P�b �PbS
�b
3 , (26b)

with constants P�a;P
�
b;Pa;Pb and exponents a; b40. For the purposes of the present paper P�a;P

�
b can be set

to zero without loss of generality.
The stress tensor for the percolating phases is specified in the same way as in the traditional theory through

S1 ¼ �P11, (27a)

S3 ¼ �P31, (27b)

where P1 and P3 are the fluid pressures. The stress tensor S2;S4 for the nonpercolating phases cannot be
specified in the same way because the forces cannot propagate in nonpercolating phases. Here it is assumed
that these stresses are given by the pressure in the surrounding percolating phase modified by the energy
density stored in the common interface with the surrounding percolating phases. This suggests an Ansatz [32]

S2 ¼ ð�P3 þ gP�2S
g�1
2 Þ1, (28a)

S4 ¼ ð�P1 þ dP�4Sd�1
4 Þ1, (28b)

which can be motivated by geometrical considerations. Here, the constants P�2;P
�
4 and exponents g; d are

constitutive parameters, and Eq. (28) is taken as a constitutive assumption that has to be tested against
experiment.

The mass transfer rates must depend on rates of saturation change. They are here tentatively assumed to be

M1 ¼ �M2 ¼ Z2fRW
S2 � S�2

S�W � SW

� �
qSW

qt
, (29a)

M3 ¼ �M4 ¼ Z4fRO
S4 � S�4
S�O � SO

� �
qSO

qt
, (29b)
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where Z2; Z4 are constants. The parameters S�W;S
�
O, S�2;S

�
4 are defined by

S�W ¼
ð1� SO imÞ

2
1� tanh 1 tO

qSO

qt

� ��� �
þ

SW dr

2
1� tanh 1 tW

qSW

qt

� ��� �
, (30a)

S�O ¼ 1� S�W, (30b)

S�2 ¼
SW dr

2
1� tanh 1 tW

qSW

qt

� ��� �
, (30c)

S�4 ¼
SO im

2
1� tanh 1 tO

qSO

qt

� ��� �
, (30d)

where SW dr;SO im are limiting saturations for S2;S4 and tW; tO are time scales governing mass exchange.

4. Hydrostatic equilibrium

Consider first the case of hydrostatic equilibrium where vi ¼ 0 for all i. In hydrostatic equilibrium all fluids
are at rest. In this case the traditional theory (i ¼W;O) implies qSW=qt ¼ 0 and qSO=qt ¼ 0. The traditional
momentum balance Eqs. (45) can be integrated to give

PWðxÞ ¼ PWðx0Þ þ RWg � ðx� x0Þ, (31a)

POðxÞ ¼ POðx0Þ þ ROg � ðx� x0Þ, (31b)

where x0 is an arbitrary fixed vector inside the sample. Combined with the assumption (11) one finds

PcðSWðxÞÞ ¼ POðxÞ � PWðxÞ ¼ Pc0 þ ðRO � RWÞg � ðx� x0Þ (32)

implying the existence of a unique hydrostatic saturation profile SWðxÞ. Here Pc0 ¼ Pcðx0Þ is the capillary
pressure at x ¼ x0. Experiments show, however, that hydrostatic saturation profiles are not unique. As a
consequence the traditional theory employs multiple PcðSWÞ relations for drainage and imbibition, and this
leads to problems when imbibition and drainage occur simultaneously [43].

For the nonlinear theory proposed in this paper the equations of mass balance (17) imply qSi=qt ¼ 0 for all
i ¼ 1; 2; 3; 4. Integrating Eqs. (18) yields

P1ðxÞ ¼ P1ðx0Þ þ RWg � ðx� x0Þ, (33a)

P3ðxÞ ¼ P3ðx0Þ þPaðS1ðxÞ
�a
� S1ðx0Þ

�a
Þ þ gP�2ðS2ðxÞ

g�1
� S2ðx0Þ

g�1
Þ þ RWg � ðx� x0Þ, (33b)

P3ðxÞ ¼ P3ðx0Þ þ ROg � ðx� x0Þ, (33c)

P1ðxÞ ¼ P1ðx0Þ þPbðS3ðxÞ
�b
� S3ðx0Þ

�b
Þ þ dP�4ðS4ðxÞ

d�1
� S4ðx0Þ

d�1
Þ þ ROg � ðx� x0Þ. (33d)

If one identifies P1 with PW and P3 with PO then Eqs. (33a,c) suggest to identify Pc as P3 � P1. Then Eqs.
(33b) and (33d) combined with S1 ¼ SW � S2 and S3 ¼ 1� SW � S4 imply Pc ¼ PcðSW;S2;S4Þ. Therefore, in
the present theory, the pressure difference Pc in hydrostatic equilibrium depends not only on SW but also on
the residual saturations S2 and S4. This degeneracy of the hydrostatic limit seems to agree with experiment.

5. Residual decoupling approximation

Consider next the approach to hydrostatic equilibrium in the RDA [32]. Residual decoupling can be
formulated mathematically as v4 ¼ 0; v2 ¼ 0 and R23 ¼ 0;R41 ¼ 0. Approach to hydrostatic equilibrium
means that the velocities v1; v3 ! 0 are small but nonzero. In this case mass balance becomes

qS1

qt
þ r � ðS1v1Þ ¼ Z2

S2 � S�2
S�W � SW

� �
qSW

qt
, (34a)
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qS2

qt
¼ �Z2

S2 � S�2
S�W � SW

� �
qSW

qt
, (34b)

qS3

qt
þ r � ðS3v3Þ ¼ Z4

S4 � S�4
S�O � SO

� �
qSO

qt
, (34c)

qS4

qt
¼ �Z4

S4 � S�4
S�O � SO

� �
qSO

qt
. (34d)

It is readily seen by insertion that Eqs. (34b) and (34d) admit the solutions

S2ðx; tÞ ¼ S�2ðxÞ þ ðS20ðxÞ � S�2ðxÞÞ
S�WðxÞ � SWðx; tÞ

S�WðxÞ � SW0ðxÞ

� �Z2
, (35a)

S4ðx; tÞ ¼ S�4ðxÞ þ ðS40ðxÞ � S�4ðxÞÞ
SWðx; tÞ � S�WðxÞ

SW0ðxÞ � S�WðxÞ

� �Z4
, (35b)

where

SWðx; t0Þ ¼ SW0ðxÞ, (36a)

S2ðx; t0Þ ¼ S20ðxÞ, (36b)

S4ðx; t0Þ ¼ S40ðxÞ, (36c)

are the initial conditions at some initial instant t0. The limiting saturations S�W, S�O, S�2;S
�
4 are given by

Eqs. (30). They depend only on the sign of qSW=qt. If qSW=qt approaches zero from above then

S�W ¼ 1� SO im, (37a)

S�O ¼ SO im, (37b)

S�2 ¼ 0, (37c)

S�4 ¼ SO im (37d)

holds for imbibition processes (i.e., qSW=qt40). If qSW=qt approaches zero from below then

S�W ¼ SW dr, (38a)

S�O ¼ 1� SW dr, (38b)

S�2 ¼ SW dr, (38c)

S�4 ¼ 0 (38d)

holds for drainage processes (i.e., qSW=qto0).
Note also that adding Eq. (34a) to Eq. (34b) resp. Eq. (34c) to Eq. (34d) reproduces the traditional law of

mass balance

qSW

qt
þ r � ðSWvWÞ ¼ 0, (39a)

qSO

qt
þ r � ðSOvOÞ ¼ 0, (39b)

provided one identifies vW; vO through the equations

SWvW ¼ S1v1 þ S2v2, (40a)
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SOvO ¼ S3v3 þ S4v4 (40b)

as the barycentric velocities.
Momentum balance in the RDA becomes

f1ðrP1 � RWgÞ ¼ R13v3 � ðR1 þM1Þv1, (41a)

0 ¼ f2ðrP3 þ rPcW � gP�2rS
g�1
2 � RWgÞ, (41b)

f3ðrP3 � ROgÞ ¼ R31v1 � ðR3 þM3Þv3, (41c)

0 ¼ f4ðrP1 þ rPcO � dP�4rSd�1
4 � ROgÞ, (41d)

where the abbreviations

R1 ¼ R13 þ R14 þ R15, (42a)

R3 ¼ R31 þ R32 þ R35, (42b)

were used. In accordance with the traditional theory [2] viscous coupling terms are neglected, i.e., R31 ¼ 0 and
R13 ¼ 0. In addition it will be assumed here that R1bM1, R3bM3, and Sia0. With these assumptions one
finds

f1ðrP1 � RWgÞ ¼ �R1v1 ¼ �R1
fW

f1

vW, (43a)

rP3 ¼ �rPcW þ gP�2rS
g�1
2 þ RWg, (43b)

f3ðrP3 � ROgÞ ¼ �R3v3 ¼ �R3
fO

f3

vO, (43c)

rP1 ¼ �rPcO þ dP�4rSd�1
4 þ ROg, (43d)

where the barycentric velocities vW; vO are defined through Eq. (40a). Subtracting Eq. (43a) from Eq. (43c), as
well as Eq. (43d) from Eq. (43b), and equating the result gives

2ðRO � RWÞgþ
R1

f2
1

fWvW �
R3

f2
3

fOvO ¼ rðPaS
�a
1 �PbS

�b
3 þ gP�2S

g�1
2 � dP�4Sd�1

4 Þ, (44)

where Eq. (26) has also been employed.
This result can be compared to the traditional theory. Inserting the constitutive assumptions (4)–(10) into

Eqs. (2) gives the generalized Darcy laws

fWvW ¼ �
k

mW
kr
WðSWÞðrPW � RWgÞ, (45a)

fOvO ¼ �
k

mO
kr
OðSWÞðrPO � ROgÞ (45b)

for the Darcy velocities fivi [2, p. 155]. Combining this equation with (11) one finds

ðRO � RWÞgþ
mW

kkr
W

fWvW �
mO

kkr
O

fOvO ¼ rPc (46)

in analogy with Eq. (44).
Comparison of Eq. (44) with (46) suggests to identify the capillary pressure up to a constant as

PcðSWÞ ¼
1
2
½PaðSW � S2Þ

�a
�Pbð1� SW � S4Þ

�b
þ gP�2S

g�1
2 � dP�4Sd�1

4 �, (47)

where S2 ¼ S2ðSWÞ and S4 ¼ S4ðSWÞ are given by Eqs. (35). This result holds in the RDA combined with the
assumptions above.
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Furthermore, Eqs. (43a,c) become the generalized Darcy laws of the traditional theory, if the relative
permeabilities are identified as

kr
WðSWÞ ¼ 2R�11

mW
k

f2
ðSW � S2Þ

2, (48a)

kr
OðSWÞ ¼ 2R�13

mO
k

f2
ð1� SW � S4Þ

2, (48b)

where S2 ¼ S2ðSWÞ and S4 ¼ S4ðSWÞ are again given by Eqs. (35).
Figs. 1–3 illustrate these results. In Fig. 1 the pressure difference P3 � P1 is shown as a function of water

saturation for various drainage and imbibition processes. The parameters were chosen in such a way that the
primary drainage and imbibition curve reproduce measured experimental data. The experimental results are
depicted as triangles (primary drainage) and squares (imbibition). The experiments were performed in a
medium grained unconsolidated water wet sand of porosity f ¼ 0:34. Water was used as wetting fluid while
air (resp. TCE) were used as the nonwetting fluid. The experiments were carried out over a period of several
weeks at the Versuchseinrichtung zur Grundwasser- und Altlastensanierung (VEGAS) at the Universität
Stuttgart. They are described in more detail in Ref. [43]. The parameters for all the curves shown in all four
figures are SW dr ¼ 0:15, SO im ¼ 0:19, a ¼ 0:52, b ¼ 0:90, g ¼ 1:5, d ¼ 3:5, Z2 ¼ 4, Z4 ¼ 3, Pa ¼ 1620Pa,
5000

4000

3000

2000

1000

0

P
c 

[P
a]

0.0 0.2 0.4 0.6 0.8 1.0

Sw

Fig. 1. Capillary pressure as function of water saturation SW calculated from Eq. (47). Experimental data for primary drainage (triangles)

and imbibition (squares) were obtained for a medium grained sand of porosity f ¼ 0:34. The primary drainage curve is the dash-dotted

line. The main hysteresis loop is the solid line. The two dashed lines are drainage and imbibition scanning curves. The drainage scanning

curve starts from SW ¼ 0:555 on the boundary imbibition curve and goes to SW ¼ 0:43. The imbibition scanning curve starts from

SW ¼ 0:43 on the drainage scanning curve and goes to the limiting SW ¼ 1� S�4 ¼ 0:81 for imbibition processes. All curves in Figs. 1–4

have the same overall parameters: SW dr ¼ 0:15, SO im ¼ 0:19, a ¼ 0:52, b ¼ 0:90, g ¼ 1:5, d ¼ 3:5 Z2 ¼ 4, Z4 ¼ 3, Pa ¼ 1620Pa,

Pb ¼ 25Pa, P�2 ¼ 2500Pa, P�4 ¼ 400Pa.
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Fig. 2. Relative permeabilities kr
W; k

r
O calculated from Eq. (48) for the same displacement processes as shown in Fig. 1. Parameters and

line styles are identical to those in Fig. 1.
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Pb ¼ 25Pa, P�2 ¼ 2500Pa, and P�4 ¼ 400Pa. The temporal scales were taken as tW ¼ tO ¼ 104 s and
jqSW=qtj ¼ 10�5 s�1.

6. Quasistatic saturation profiles close to the hydrostatic limit

To obtain more insight into the nature of the RDA it is necessary to integrate Eqs. (34) and (41). While this
is analytically difficult for v1a0, v3a0, it is simple in the hydrostatic case when v1 ¼ 0, v3 ¼ 0. Therefore, it is
now assumed that Eqs. (35) remain valid upon approach to the hydrostatic limit, i.e., for v1; v3! 0. Then Eqs.
(41) can be integrated with respect to x in the same way as before, if one neglects all terms involving v1; v3. This
leads to

P1ðx; tÞ ¼ C1ðtÞ þ RWg � x, (49a)

P3ðx; tÞ þP�a �PaS
�a
1 � gP�2S

g�1
2 ¼ C2ðtÞ þ RWg � x, (49b)

P3ðx; tÞ ¼ C3ðtÞ þ ROg � x, (49c)

P1ðx; tÞ þP�b �PbS
�b
3 � dP�4Sd�1

4 ¼ C4ðtÞ þ ROg � x, (49d)
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Fig. 3. Residual (nonpercolating) water saturation S2 (left figure) and oil saturation S4 (right figure) calculated from Eq. (35) as a function

of total water saturation SW. Parameters and line styles are identical to those in Figs. 1 and 2.
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where CiðtÞ are integration constants. The first and third equations reflect the fact that the pressure in the
percolating phases 1 and 3 is hydrostatic. Inserting (49c) into (49b) and (49a) into (49d) shows

C3ðtÞ � C2ðtÞ þP�a þ ðRO � RWÞg � x ¼ PaS
�a
1 þ gP�2S

g�1
2 , (50a)

C1ðtÞ � C4ðtÞ þP�b þ ðRW � ROÞg � x ¼ PbS
�b
3 þ dP�4Sd�1

4 . (50b)

From qSi=qt ¼ 0 for i ¼ 1; 2; 3; 4 follows that CiðtÞ ¼ Ci ¼ const. Using volume conservation gives then

Ca þ ðRO � RWÞg � x ¼ Pa½SWðxÞ � S2ðxÞ�
�a þ gP�2S2ðxÞ

g�1, (51a)

Cb þ ðRW � ROÞg � x ¼ Pb½1� SWðxÞ � S4ðxÞ�
�b þ dP�4S4ðxÞ

d�1, (51b)

where Ca ¼ C3 � C2 þP�a and Cb ¼ C1 � C4 þP�b. Inserting S2;S4 from Eqs. (35) yields two nonlinear
equations that can be solved numerically for SWðxÞ.

Further analysis of Eqs. (51) will from here on be restricted to the case of one dimension. Let this be the z-
axis. The direction of gravity g is chosen to point along the negative z-direction, so that g � x ¼ �gz. If ROoRW
and Pa;Pb;P

�
2;P
�
440 holds, then it is readily seen that the right-hand side remains nonnegative for all values

of z 2 R (note that also S2pSW and a;b; g; d40), while the left-hand side in Eq. (51a) becomes negative for
z!�1. It follows that Eq. (51a) cannot have physical solutions (obeying 0pSWp1) for z!�1.
Similarly, Eq. (51b) does not have physical solutions for z!1. A unique physical solution for all z can be
found by matching the solution SWaðzÞ of Eq. (51a) for large z to the solution SWbðzÞ of (51b) for small z at a
unique intersection point z ¼ z�. This is achieved through fixing the difference D� ¼ jCa � Cbj of the
integration constants. The difference D� is chosen in such a way that the solutions osculate at z ¼ z�. Any
deviation from D� will produce either two or zero intersection points between SWaðzÞ and SWbðzÞ. The profiles
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SWaðzÞ and SWbðzÞ are found by numerical solution of Eqs. (51) combined with Eqs. (35). For all subsequent
calculations C1 ¼ 0, C4 ¼ 0, P�a ¼ 0 and P�b ¼ 0 has been assumed without loss of generality.

Fig. 4 shows the quasistatic saturation profiles for a process close to primary drainage. The initial
saturations are assumed as S20ðzÞ ¼ 0 and SW0ðzÞ ¼ 1� S40ðzÞ ¼ 0:98, i.e., the medium is almost fully
saturated with water and contains initially a very small residual oil saturation of S40ðzÞ ¼ 0:02. The time scales
tW ¼ tO ¼ 104 s are unchanged, and the rate of saturation change is taken as qSWðz; tÞ=qt ¼ �10�5 s�1. The
integration constants are Ca ¼ 2250Pa and Cb ¼ 500Pa. Then the switch from SWaðzÞ to SWbðzÞ occurs at
z� ¼ 0:06m. Note that the drainage process creates irreducible (nonpercolating) water in the upper part of the
sample. The profile S2ðzÞ describing this nonpercolating water is seen as the leftmost of the three solid lines in
Fig. 4. The water profile SWðzÞ is seen as the central S-shaped solid line. Its shape is familiar from the
traditional theory. Finally, the small residual (nonpercolating) oil profile S4ðzÞ is seen as the rightmost solid
line. It diminishes to zero in the upper part of the sample.

Next, consider an imbibition process starting from the same primary drainage profiles that are shown in
Fig. 4. The flow process corresponds to a rising water table, e.g. through injecting water from below or
withdrawing oil from the top. The three dotted curves in Fig. 5 are the initial profiles, and they are identical to
the three solid lines in Fig. 4. The quasistatic profiles resulting from the imbibition are shown as the three solid
lines in Fig. 5. Now, the rate of saturation change was qSW=qt ¼ 10�5 s�1. The integration constants reflecting
the pressure changes are Ca ¼ 500Pa, Cb ¼ 1835 Pa. The switch between solutions occurs at z� ¼ 0:619m.
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Fig. 4. Quasistatic primary drainage profiles (solid lines) as function of height z for S2ðzÞ (left solid line), SWðzÞ (center solid line), and

1� S4ðzÞ (right solid line). The initial profiles (dotted lines) were spatially constant S20ðzÞ ¼ 0 (left), SW0ðzÞ ¼ 1� S40ðzÞ ¼ 0:98 (right).

The rate of saturation change is qSWðz; tÞ=qt ¼ �10�5 s�1. The integration constants are Ca ¼ 2250Pa, Cb ¼ 500Pa, and the switch occurs

at z� ¼ 0:06m.
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Fig. 5. Quasistatic saturation profiles S2ðzÞ (left solid line), SWðzÞ (center solid line) and 1� S4ðzÞ (right solid line) as a function of height z

starting from the drainage profile shown in Fig. 4. The initial drainage profiles S20ðzÞ, SW0ðzÞ and S40ðzÞ (from left to right) are shown as

dotted lines. The rate of saturation change was qSW=qt ¼ 10�5 s�1. The integration constants are Ca ¼ 500Pa, Cb ¼ 1835Pa, and

z� ¼ 0:619m.
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Some of the profiles are nonmonotonic. The nonpercolating water phase was strongly reduced by the rising
water table, and a ‘‘hole’’ appears between z ¼ 0:5 and 1m. Correspondingly the nonpercolating oil phase has
acquired a maximum around z ¼ 0:5m. The total water profile shows that the imbibition process takes place
only in the upper part of the profile. The lower part of the sample has remained unaffected. This example
demonstrates a difference to the traditional theory. The quasistatic profile for a drainage followed by
imbibition can coexist with a unique S-shaped PcðSWÞ relation. The strict relationship between static profiles
and the PcðSWÞ relation seems not to carry over into the RDA.

Finally, consider a soil column that is initially filled with a constant total water saturation of SW0ðzÞ ¼ 0:5.
Such an initial saturation could be achieved by rapidly turning a horizontal soil column into a vertical
position. Assume that the initial nonpercolating saturations are S20ðzÞ ¼ 0:03 and S40ðzÞ ¼ 0:05. In this case
the upper part of the column will be drained while the lower will show imbibition. The resulting quasistatic
saturation profiles calculated within the RDA are displayed in Fig. 6. The process changes from drainage for
z40:59m to imbibition for zo0:59m. In the example the integration constants are Ca ¼ 1900Pa and
Cb ¼ 323Pa. The switch between Eq. (51a) and Eq. (51b) occurs at z� ¼ 0:06m. It is interesting to note that a
kink appears at the initial saturation value. This could result from the assumption that qSW=qt switches
abruptly at z ¼ 0:59 from �10�5 to 10�5 s�1. In a dynamic calculation the switching does not take place
abruptly, and the kink might become smeared out.
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Fig. 6. Quasistatic saturation profiles S2ðzÞ (left solid line), SWðzÞ (center solid line) and 1� S4ðzÞ (right solid line) as a function of height z

starting from initially constant profiles S20ðzÞ ¼ 0:03 (left dotted line), SW0ðzÞ ¼ 0:5 (center dotted line), and S40ðzÞ ¼ 0:05 (right dotted

line). The process changes from drainage to imbibition at z ¼ 0:59m. The rate of saturation change was qSW=qt ¼ �10�5 s�1 for

z40:59m corresponding to a drainage process, and qSW=qt ¼ 10�5 s�1 for zo0:59 corresponding to an imbibition process. The

integration constants are Ca ¼ 1900Pa, Cb ¼ 323Pa. The upper to lower profile switch happens at z� ¼ 0:06m.
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7. Conclusion

A generalization of the traditional theory of macroscopic capillarity in porous media was presented in this
paper. It reproduces all experimental observations on hysteresis and process dependence of capillary pressure
and relative permeabilities. The approach is based on the distinction between percolating and nonpercolating
fluid phases introduced in Refs. [9–11]. The balance laws for mass, volume and momentum were augmented
with a complete set of constitutive assumptions. The resulting equations were analyzed in the special
limiting cases of hydrostatic equilibrium, and for the case of the RDA. Quastistatic saturation profiles were
calculated numerically, and a capillary pressure–saturation relation was found analytically. The paper
suggests that the time honoured concept of a capillary pressure function should be critically reviewed, and that
the residual saturations are to a large extent responsible for the hysteresis and process dependence observed in
experiment.
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