

Universiteit Utrecht

APPLICATION OF **PORE-NETWORK MODELS** FOR ANALYSIS OF DARCY-SCALE TWO-PHASE THEORIES

V. Joekar-Niasar

Special thanks to: S. M Hassanizadeh H. K. Dahle A. Leijnse R. Helmig M. Celia D. Wildenschild L. Pyrak-Nolte

Averaging, Upscaling, and New Theories in Porous Media Flow and Transport, Bergen, October 14-15, 2010

PART I: TWO-PHASE FLOW AT PORE SCALE PART II: NOVERLTY OF PORE-NETWORK MODELS FOR DARCY-SCALE ANALYSIS

Universiteit Utrecht

TWO-PHASE FLOW AT PORE SCALE

PARAMETERS AND EFFECTS

PARAIVIE LEND AIND EFFECTS

NOVELTY OF PORE-NETWORK MODELS

Averaging, Upscaling, and New Theories in Porous Media Flow and Transport, Bergen, October 14-15, 2010

Effective parameters in immiscible twophase flow

Effective parameters in immiscible twophase flow

Parameters

Pore geometry and topology (e.g. aspect ratio, coordination no.)

Dynamic parameters: Flow conditions (capillary number, Bond number, ...) Fluid/solid properties (viscosities, contact angle, interfacial tension) Darcy-scale observations

Hysteresis in P^c-S^w curve

Hysteresis in a^{nw}-S^w curve

Residual (nonwetting phase) saturation

Dynamic effects in pressure field

Aspect ratio

Radius of pore body size to pore throat size
 significant effect during imbibition. i.e. larger aspect ratio, more snap-off! More snap-off, more nonwetting phase trapping (Lenormand and Zarcone, JFM, 1983, 1984; Wardlaw and Yu, 1988; loannidis et al. 1991)

Examples of porous media: glass-beads vsTuff

courtesy of D. Wildenschild

Examples of porous media: carbonate

Examples of porous media: fibers

www.bazylak.mie.utoronto.ca/research/

Cooperative filling vs. snap-off

U Real

Effective parameters in two-phase flow

Dynamic paramters:
 Viscosityratio $M = \frac{\mu^{inv}}{\mu^{rec}}$ Capillary number, viscous forces to capillary ones $Ca = \frac{\mu^{inv}q^{inv}}{\sigma^{nw}}$

Interaction among parameters ..

from pore to core

Bergen, October 14-15, 2010

Dynamic conditions (capillary number)

Ganglia flow regimes (a) Large ganglia dynamics (b) Small ganglia dynamics (c) Droplet traffic flow (d) Connected-path flow (*Avraam and Payatakes, 1995*).

Ref: D. G. Avraam, and A. C. Payatakes, 1995, Flow Regimes and Relative Permeabilities during Steady-State Two-Phase Flow in Porous Media, J.Fluid Mech. 293, 181-206

Dynamic conditions (capillary number)

Ca(wetting)=10⁻⁷ M(n/w)=3.35 Ca(wetting)=10⁻⁶ M(n/w)=3.35

Ref: D. G. Avraam, and A. C. Payatakes, Flow Regimes and Relative Permeabilities during Steady-State Two-Phase Flow in Porous Media, J.Fluid Mech. 293, 181-206

Dynamic effects on residual saturation

Ref: D. G. Avraam, and A. C. Payatakes, Flow Regimes and Relative Permeabilities during Steady-State Two-Phase Flow in Porous Media, J.Fluid Mech. 293, 181-206

 Universiteit Utrecht

NOVERLTY OF PORE-NETWORK MODELS FOR DARCY-SCALE ANALYSIS ...

CONVENTIONAL APPLICATIONS

CONVENTIONALARY CONVENTIONS

Averaging, Upscaling, and New Theories in Porous Media Flow and Transport, Bergen, October 14-15, 2010

To investigate a hypothesis

Conventional two-phase flow simulators provide biased information.
Pore-scale two-phase flow simulators are required.

Pore-network modelling: definitions

Coordination number: number of connections in a pore body Pore body: large pores in the connection points (nodes) Pore throat: long narrow pores connecting the pore bodies

Averaging, Upscaling, and New Theories in Porous Media Flow and Transport Bergen, October 14-15, 2010

We select pore-network models..

Yes, because

- Physical-based models using pore-scale information.
- Application to many static and dynamic processes.
- Compared to other porescale simulators is not computationally expensive.
- Capability to provide upscaled information.

But...

- Translation of topology and geometry is inevitable, and not always straight forward!
- No detail information within a pore (e.g. pressure field in a pore).
- Local laws/rules are inevitable, and devil! be careful!!!!

Averaging, Upscaling, and New Theories in Porous Media Flow and Transport Bergen, October 14-15, 2010

Quasti-static vs. dynamic PNMs

Uasi-static

- Computationally very cheap.
- No pressure field is solved.
- Pore-scale geometry and topology are only important.
- Used extensively, for twophase and three-phase flow; P^c-S^w, k^r-S^w, S^w-a^{nw}, reactive transport, etc.
- as a predictive tool

- Computationally expensive.
- Pressure field is solved.
- Network and fluids properties are important.
- Not been used as extensively as quasi-static ones; P^c-S^w, k^r-S^w,S^w-a^{nw}, mobilization of disconnected phase, dynamic pressure field
- Weak tractability due to nonlinearities at pore scale
- A long way to go!

Averaging, Upscaling, and New Theories in Porous Media Flow and Transport Bergen, October 14-15, 2010

Quasi-static vs. dynamic PNMs

🛡 uasi-static

$$p_i^n - p_i^w = f(\kappa_i) = f(s_i^w)$$

 $s_i^w + s_i^n = 1$ appended to the local rules:

 $K_{ij}^{\alpha} = K_{ij}^{\alpha}(\kappa_{ij}, \mu_{ij}^{\alpha})$ $p_{e_{ij}}^{c} = f(r_{ij})$ $p_{s_{ij}}^{c} = f(r_{ij})$

ynamic $V_i \frac{\Delta s_i^{\alpha}}{\Delta t} = -\sum_{j=1}^{N_i} Q_{ij}^{\alpha}, \alpha = w, n$ $Q_{ij}^{\alpha} = K_{ij}^{\alpha} (p_i^{\alpha} - p_j^{\alpha})$ $p_i^n - p_i^w = f(\kappa_i) = f(s_i^w)$ $s_{i}^{w} + s_{i}^{n} = 1$ appended to the local rules: $K^{\alpha}_{ij} = K^{\alpha}_{ij}(\kappa_{ij}, \mu^{\alpha}_{ij})$ $p_{e_{ij}}^c = f(r_{ij})$ $p_{s_{ii}}^c = f(r_{ij})$

Averaging local entities:

Saturation:

$$S^{w} = \frac{V^{w}}{V^{w} + V^{n}} = \frac{\sum_{i=1}^{N_{pb}} s_{i}^{w} V_{i}}{\sum_{i=1}^{N_{pb}} V_{i}}$$
$$S^{n} = 1 - S^{w}$$

Intrinsic phase pressure averaging:

$$P^{\alpha} = \frac{\sum_{1}^{N_{pb}} p_i^{\alpha} s_i^{\alpha} V_i}{\sum_{1}^{N_{pb}} s_i^{\alpha} V_i}, \alpha = n, w$$

Pore-network models can be predictive

Micromodel: simulations vs. experiments

Pore-network models can be predictive

Glass beads: simulations vs. experiments

Universiteit Utrecht Bergen, October 14-15, 2010

Universiteit Utrecht

NOVERLTY OF PORE-NETWORK MODELS FOR DARCY-SCALE ANALYSIS ...

PARAMETERIZATION AND ANALYSIS

Averaging, Upscaling, and New Theories in Porous Media Flow and Transport, Bergen, October 14-15, 2010

Extended Darcy's law for two-phase

$(P^c, S^w, a^{nw}) = 0$

Tested in: - Glass beads - Micro-model - Conceptual

more info: Joekar-Niasar ,*The Immiscibles*, 2010

On uniqueness of P^c-S^w-a^{nw}surface: Glass beads

On uniqueness of P^c-S^w-a^{nw}surface: Glass beads

On uniqueness of P^c-S^w-a^{nw}surface

Bergen, October 14-15, 2010

$$P^n - P^w = P^c - \tau \frac{\partial S^w}{\partial t}$$

Equilibrium and non-equilibrium phase pressure difference

Ur

Equilibrium and non-equilibrium phase pressure difference

Univ

Non-equilibrium capillarity coefficient

Conclusions

- <u>Equilibrium</u> P^c S^w-a^{nw} surfaces obtained under drainage and imbibition are almost identical.
- It seems that <u>non-equilibrium</u> P^c S^w-a^{nw} surfaces can be identical to <u>equilibrium</u> P^c - S^w-a^{nw} surface.
- Capillary pressure-saturation curve and phase pressures difference-saturation curve are <u>not</u> unique under dynamic conditions.
- Phase pressures differences are highly dependent on boundary pressures and time rate of change of saturation as expected from the theory.
- Dynamic capillarity coefficient is not unique under drainage and imbibition. It is a function of effective viscosity and fluids distribution.

THANKS FOR YOUR ATTENTION

Models are to be used, not believed.

H. Theil