liten ceatech

AST PROTOCOLS FOR PEM WATER ELECTROLYIS : INSIGHT ON PERFORMANCES AND COMPONENTS DEGRADATION

CEA - French Alternative Energies and Atomic Energy Commission

Inks formulation, electrochemical characterisations

• High performing and durable PEM WE are need.

European KPI objectives*

Table 2: Expected evolution of key electrolyser system performance indicators

	2015	2020	2025	2030
System cost (€/kW)	950-1,600	600–1,000	600-900	600-800
Indicative stack size (MW)		1-3 MW		2-4 MW
Indicative large system size (MW)	≈3	≈5	≈6	≈7
Electrical input (kWh/kg _{H2})	≈56	≈52	≈51	≈50
Stack life (khr)	65-80	75-95	75-95	80-95

A linear voltage degradation of 1μ V/hr translates into an additional electrical energy input of ~2 kWh/kgH₂ after 60,000 hours of continuous operation.

* FCH JU Report « Development of Water Electrolysis in the European Union » L. Bertuccioli, Feb 2014

NOVEL

• Most of PEM WE show a degradation voltage between 0,5 and 15 μV/h

 PEM WE suffer from less intensive researches on durability and degradation than PEM FC

NOVEL

Short introduction on main degrading components in PEM WE

Analytical Methods and main outcomes

Summary and recommendations

Short introduction on main degrading components in PEM WE

2119 International Worksnop on durability and degradation issues in PEM electrolysis cells and its components Fouda-Onana Frédéric 8

NOVEL

liten

In situ analyses

NOVEL

Analytical Methods and main outcomes

Pol.Curv

Analytical Methods and main outcomes

Pol.Curve

Pol.Curve

Pol.Curve

H₂O + 5 ppm Fe

AST-4

Conclusion from Pol.Curve

Ageing more important at high current (caused by the resistance).

Pol.Curve

Cannot conclude wihout further analyses

ECSA

NOVEL

liten

Ceatech

 $Q_{tot} = Q_{inner} + Q_{outer}$ 2nd international workshop on durability and degradation issues in PEM electrolysis cells and its components Fouda-Onana Frédéric | 18

Ardizzone et al. Electrochimica acta vol 35 nº 1- 263-267 (199

j/mA.cm⁻²

-60

NOVEL

0 0 50 100 150 200 Γ/ν Time / h ● Qtot (C/cm2) ★ Qouter (C/cm2)

The different shapes of CV do not affect the Pol.Curve (activation part)
After 196 h(EoL) CV unusal shape, probably too resitive contact resistance
After 144 h appearence of Hupd peak (0 < E < 0,3 V_{RHE})

liten Ceatech

100

-100

NOVEL

Current density mA/cm2

Analytical Methods and main outcomes

Cell voltage / V

t0 + 190h AST-3

t0 + 237,5h AST-3

Same conclusion for AST2 and AST-3 than AST-1

No effect of the active surface area change on the **Pol.Curves**

With ageing, appears \mathbf{H}_{upd} peak

liten Ceatech

Analytical Methods and main outcomes

Pol Curve PRR ECSA G-EIS

NOVEL

 R_{Ω} independant of the current density (ohmic behaviour)

R_{LFLoop} decreases with polarization (charge transfert behaviour)

NOVEL

NOVEL

Analytical Methods and main outcomes

With ageing R_{Ω} decrease at high current density

R_{HFLoop} and R_{LFLoop} do not change with ageing (consistent with activation part Pol.curves)

Analyses from Bode representation

Effect of the polarization reduces the charge transfer resistance (LF_{loop}) that increases Cuttoff Frequency

Effect of the ageing reduces the Cdl that increases Cutt-off frequency (consistent with the outer capacitance diminution with the ageing)

liten

Ceatech

-15 • BoL AST-1 @ 0.1A/cm2 • After 48h AST-1 @ 0.1 A/cm2 • After 96h AST-1 @ 0.1 A/cm2 • After 144h AST-1 @ 0.1 A/cm2 -10 • After 192h AST-1 @ 0.1 A/cm2 Phsae。 -5 0 0,10 1,00 10,00 100,00 1 000,00 Freq /Hz

NOVEL

Analytical Methods and main outcomes

-1.8

BoL AST-1 @ 2 A/cm2

Analyses from Bode representation

NOVEL

Analytical Methods and main outcomes

Pal.Curve FRR ECSA G-EIS

_30 μm lost 1500 h (20 nm/h)

AST-2 and AST-3 more degrading than AST-1

NOVEL

79 m Ω .cm²

GDL // fresh CC) // BP

// Interface

CC/IrO₂ // BP: IrO₂ facing CC in contact with the BP

a «soft material ».

2nd international workshop on durability and degradation issues in PEM electrolysis cells and its components Fouda-Onana Frédéric | 31

NOVEL

SEM qualitative analyses

liten Ceatech

Analytical Methods and main outcomes

SEM

EoL AST – 2

NOVEL

SEM

EoL AST-4

SEM

Conclusion

Summary and recommendations

AST are more agressive than steady state ageing (40 times faster in comparison with 5 cellules – 300 cm² for 4000h)

NOVEL

AST-2 able to thin the membrane and oxidized CC Most complete ageing protocols from those tested

Liten Ceatech

Acknowledgements

<u>CEA :</u>

S. Chelghoum D. Thoby

Fraunhofer :

A. Georg

<u>JM :</u>

E. Price

E. Wright

European funding:

Under grant agreement n° [303484] for the Novel project

AST PROTOCOLS FOR PEM WATER ELECTROLYIS : INSIGHT ON PERFORMANCES AND COMPONENTS DEGRADATION

2nd international workshop on durability and degradation issues in PEM electrolysis cells and its components| Fouda-Onana Frédéric

Thank you for the attention