RERC 2014 - 16.06.2014 - Oslo

HYDROGEN FOR RENEWABLE ENERGY STORAGE:

DEVELOPMENT OF PEM WATER ELECTROLYSERS

Magnus Thomassen, Tommy Mokkelbost SINTEF Materials and Chemistry

Background

- Political (and public) pull for increased use of renewable energy sources
- >27% renewables in EU by 2030
- 40% renewables in Germany by 2020, 80% by 2050.

Germany's plan: switch from coal and nuclear to renewables Electricity generation in Germany 2005-2050, scenario Source: DLR and Praumhofer IWES

German Energy Transition energy transition.de (CC) av an

RES intermittency needs countermeasures

Increased capacity of transmission networks Flexible energy generation Demand side load management (Smart Grids) Energy storage

Energy consumption and wind power production in Denmark 2014

What is the need for energy storage? – 100% Renewables in Europe 25 TWh 320 TWh (150 TWh/y balancing & 2.2 TWh ideal energy (no balancing) storage) M. G. Rasmussen et al (Energy Policy, (51), 2012) 320 TWh 50 TWh (no excess RES (50% excess RES power) power)

D. Heide et al. (Renewable Energy, (36), 2011)

Hydrogen as energy storage - large scale!

Hyunder deliverable 2.1 www.hyunder.eu

Hydrogen as energy storage – linking energy sectors

Source: Hydrogennet.dk

6

Water electrolysis – technological status

- The Dutch merchant van Trostwijk and medical doctor Deinman observed the decomposition of water into "combustible air" and "life giving air" in 1789.
- In 1800 Alessandro Volta published the invention of the voltaic pile (see original sketch)
- J. W. Ritter, W. Nicholson and A. Carlise demonstrated "water electrolysis" only months after

7

Water electrolysis – technological status

- Production of hydrogen by water electrolysis
 - 1-2 % of total hydrogen production in the world
 - Onsite production, from very small to large scale
 - Very pure hydrogen
- Applications
 - Food industry
 - Metallurgical industry and metal works
 - Semiconductor production
 - Chemical and petrochemical industry
 - Meteorological balloons
 - Research labs

Industrial application	Typical size electrolyser		
Jewellery, laboratory and medical engineering	5 - 500 NI/h		
Generator cooling in power plants	5 - 20 Nm³⁄h		
Feed Water Inertisation (BWR water chemistry)	10 - 50 Nm³⁄h		
Float glas production (protective atmosphere)	50 - 150 Nm∛h		
Electronics industry	100 - 400 Nm³⁄h		
Metallurgy	200 - 750 Nm³⁄h		
Food industry (fat hardening)	100 - 900 Nm∛h		

Approaches for water electrolysis

Technology	Temp. Range	Cathodic Reaction (HER)	Charge Carrier	Anodic Reaction (OER)
Alkaline electrolysis	40 - 90 °C	$2H_2O + 2e^- \Rightarrow H_2 + 2OH^-$	OH-	$2OH^- \Longrightarrow \frac{1}{2}O_2 + H_2O + 2e^-$
Membrane electrolysis	20 - 100 °C	$2H^+ + 2e^- \Rightarrow H_2$	H+	$H_2O \Rightarrow \frac{1}{2}O_2 + 2H^+ + 2e^-$
High temp. electrolysis	700 - 1000 °C	$H_2O + 2e^- \Longrightarrow H_2 + O^{2-}$	O ²⁻	$O^{2-} \Longrightarrow \frac{1}{2}O_2 + 2e^{-}$

9

Efficiency of water electrolysis

- Reversible losses
 - HHV: 3.54 kWh/Nm³ H₂
 - Endothermal reaction

- - Irreversible losses
 - Overpotentials and internal resistance

Performance and efficiencies of water electrolysis

- No significant reduction of energy consumption can be expected
- Higher operating pressure
- Higher power density
- Dynamic operation

Pressurized electrolysers

- Pressurized hydrogen is needed for almost all applications
- Electrochemical compression more efficient than mechanical
- Mechanical compressors needed for high pressure applications

Pressure [bar]	AEL	PEMEL	HTEL
Typically	4 - 15	30	Atm.
Available	60	207	(Atm.)
Demonstrated	~ 345	~ 400	(10)

Dynamic operation

- PEM electrolysers capable of sub second regulation
- Alkaline electrolysers somewhat more sluggish
- High Temperature electrolysers need more stable operation
- Significant capacity for dynamic load management

PEM Electrolyzer Operation as Control Power Unit

SIEMENS

startup time (black start) ~ 10 min

from standby to full load in < 10 sec</p>

= full dynamic behavior (positive, negative or combined mode control power)

Hydrogen from renewables - economy

Fuel cells and hydrogen

Target setting – Carbon price to achieve parity with counterfactuals

Germany, 2030

http://www.fch-ju.eu/sites/default/files/study%20electrolyser_0.pdf

Cost reduction and efficiency improvement

NEXPEL Projected stack cost

fuel cells & hydrogen for sustainability

Technology for a better society 16

 Coordinator of two FP7 (FCH-JU)projects on materials #EHellup projectounder negotiations electrolysers
The next step: NOVEL

Technology for a better society 17

New Energy World

fuel cells & hydrogen for sustainability

Advanced oxygen evolution catalysts

- Increase catalytic activity and stability of O₂ evolution catalysts by utilization of a support
 - Increase active surface area
 - Increase catalyst utilization
 - Reduce catalyst particle sintering by support stabilization
 - Increase specific catalytic activity by catalyst support interaction?

Challenges

- High surface area support
- Stable at elevated voltages and acidic environment for several 1000s hours.

Supported catalyst

Advanced oxygen evolution catalysts

- Iridium nanoparticles (d ~ 2-4 nm)
- Antimony doped Tin Oxide as support
- Noble metal loading of 20 wt%

• <u>300% higher catalytic activity than</u> <u>state of the art OER catalysts</u>

Other ongoing activities

- Development of new conductive oxides
 - Catalyst supports and coatings
- Advanced catalysts
 - Trimetallic alloys for supported catalysts
- Coatings for replacement of Ti as bipolar plates
- Studies of lifetime and degradation

SINTEF activities on High Temperature electrolysers

• NFR ENERGIX METALLICA project (coordinator: SINTEF, Partner: UiO) (2013-2017) The primary objective is to develop a robust steam electrolysis technology for H_2 production based on novel **planar** alloy supported proton conducting electrolysers (PCEC) operating at 600°C for efficient use of heat and steam supplied by geothermal and solar plants. Proof-of-concept of CO₂ and steam co-electrolysis will also be demonstrated for potential integration of PCEC in industrial processes.

 FCH ELECTRA project (coordinator: UiO, Partners: PROTIA, CSIC; SINTEF, Carbon Recycling International, Abengoa Hidrogeno, Marion Technolgies) (2014-2018)
The main goal of ELECTRA is to design, build, and test a kW size **multi-tubular** proton ceramic high temperature electrolyser for production of hydrogen from steam and renewable energy.

Thank you for your attention

