

## Wir schaffen Wissen – heute für morgen

Radiation grafted polymer electrolyte membranes for water electrolysis cells - Characterization of key membrane properties

Albert Albert, Thomas J. Schmidt, Lorenz Gubler

E-MRS Spring Meeting 2014, Symposium CC

Lille, France, 28 May 2014



# Acknowledgements

NOVEL Novel materials and system designs for low cost, efficient and durable PEM electrolysers



The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement n°303484.



# Polymer Electrolyte Electrolyzer vs Fuel Cell





Radiation grafted membrane





|                                                       | Styrene α-Methylstyrene 1,3-Diis<br>(S) (AMS)                                                                    | sopropenylbenzene<br>(DiPB)                                                                                                |  |  |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                       | CN CN                                                                                                            | F F<br>F F<br>n                                                                                                            |  |  |
|                                                       | Acrylonitrile Methacrylonitrile Ethylene tetrafluoroethylene<br>(AN) (MAN) (ETFE)                                |                                                                                                                            |  |  |
|                                                       |                                                                                                                  |                                                                                                                            |  |  |
|                                                       | In this research:                                                                                                | Previous work in our group*:                                                                                               |  |  |
| Monomer/co-monomer                                    | In this research:<br>S/AN and S/AN/DiPB                                                                          | Previous work in our group*:<br>AMS/MAN/DiPB (PSI Generation 2)                                                            |  |  |
| Monomer/co-monomer<br>Base film                       | In this research:<br>S/AN and S/AN/DiPB<br>ETFE 50 µm base film                                                  | Previous work in our group*:<br>AMS/MAN/DiPB (PSI Generation 2)<br>ETFE 25 µm base film                                    |  |  |
| Monomer/co-monomer<br>Base film<br>Base film supplier | In this research:<br><u>S/AN and S/AN/DiPB</u><br><u>ETFE 50 µm base film</u><br>DuPont (D)<br>Saint-Gobain (SG) | Previous work in our group*:<br>AMS/MAN/DiPB (PSI Generation 2)<br>ETFE 25 µm base film<br>DuPont (D)<br>Saint-Gobain (SG) |  |  |



Apply fuel cell technology to characterize membranes for electrolyzer (same mechanism of proton conduction)



\* M. Schalenbach, M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, Int J Hydrog Energy 38, 14921 (2013) \*\* L. Gubler, L. Bonorand, ECS Trans. 58, 149 (2013)





- S/AN and S/AN/DiPB: better gas barrier property
- Similar resistance to N-115 or N-117

D: DuPont base film; SG: Saint-Gobain base film

 $M : \text{Figure of merit (V)} \\ R_{\Omega}: \text{Area resistance (m} \Omega \cdot \text{cm}^2) \\ I_x : \text{Gas crossover current density (mA/cm}^2)$ 





# Mechanical property

**Tensile Test in Machine Direction** 

Tensile Test in Transverse Direction (Ambient condition)



D: DuPont base film; SG: Saint-Gobain base film



# Mechanical property

Tensile Test in Machine Direction (Ambient condition)



#### Ambient condition (Machine direction)





#### **Polarization Plot**





N-115 or N-117 S/AN and S/AN/DiPB membranes



Summary

130 or 180  $\mu m$ 

PAUL SCHERRER INSTITUT

60 µm



- Better gas barrier property
- Similar resistance
- Better mechanical property
- Lower cell performance (can be improved)
- Potentially low cost\*





# **Electrochemistry Laboratory**



Page 11 of 11



# Back Up Slides





- PFSA DOE/DTI
- PFSA DuPont
  - Estimate based on current technology (base cas
- Ultimate potential (lowest case)



## Fuel cell condition:

Single cell with 30 cm<sup>2</sup> active area; cell temperature 80 °C

Gas diffusion electrode JM ELE0162, 0.4 mg Pt/cm<sup>2</sup>; hot-pressed at 120 °C

H<sub>2</sub>/O<sub>2</sub> (N<sub>2</sub>); 1.5/1.5 stoichiometrie

Minimal flow 200/200 mln/min

Pressure 2.5/2.5 bar absolute

Relative humidity 100% (Humidifier temperature 85/85 °C)



# Electrolyzer vs Fuel Cell









# Potential is set. Current density is measured.



### Hydrogen Permeation

Cell at 80°C, H2/N2 1.5/1.5 stoich (min. 200/200 mln/min), pressure 2.5/2.5 bara, humidifier temperature 85/85°C



Albert Albert, E-MRS Spring Meeting 2014, Lille, France



## Gas crossover current densities



![](_page_19_Picture_0.jpeg)

## Resistance

#### <u>Resistance</u>

Cell at 80°C, H2/O2 1.5/1.5 stoich (min. 200/200 mln/min), pressure 2.5/2.5 bara, humidifier temperature 85/85°C

![](_page_19_Figure_4.jpeg)

D: DuPont base film; SG: Saint-Gobain base film; I.S.: improved surface

Albert Albert, E-MRS Spring Meeting 2014, Lille, France

![](_page_20_Picture_0.jpeg)

# Mechanical Testing (ambient condition)

|               | Machine Direction |                           |                            | Transverse Direction |                           |                               |
|---------------|-------------------|---------------------------|----------------------------|----------------------|---------------------------|-------------------------------|
| Membrane      | Thickness (μm)    | Tensile<br>strength (MPa) | Elongation at<br>Break (%) | Thickness (μm)       | Tensile<br>strength (MPa) | Elongation at<br>Break<br>(%) |
| NR-211        | 24.8 ± 0.4        | 27.6 ± 0.6                | 149.1 ± 4.5                | 24.4 ± 0.2           | 27.8 ± 0.6                | 146.8 ± 4.7                   |
| N XL-100      | 27.2 ± 0.3        | 45.0 ± 1.1                | 105.6 ± 9.9                | 27.0 ± 0.5           | 38.5 ± 1.1                | 135.6 ± 8.1                   |
| NR-212        | 50.0 ± 0.5        | 28.8 ± 0.9                | 178.4 ± 8.4                | 51.5 ± 0.4           | 29.8 ± 1.5                | 185.5 ± 11.9                  |
| N-1035        | 71.3 ± 1.8        | 41.8 ± 1.8                | 101.2 ± 5.3                | 75.0 ± 1.7           | 33.2 ± 1.5                | 171.9 ± 4.4                   |
| N-1135        | 80.2 ± 1.4        | 40.2 ± 2.3                | 123.8 ± 10.4               | 82.1 ± 1.0           | 33.5 ± 1.4                | 203.0 ± 8.6                   |
| N-105         | 127.6 ± 1.8       | 38.9 ± 2.3                | 143.3 ± 5.1                | 125.9 ± 1.2          | 30.0 ± 1.1                | 216.9 ± 8.4                   |
| N-115         | 137.3 ± 1.6       | 39.3 ± 0.6                | 178.0 ± 3.2                | 134.5 ± 1.7          | 35.2 ± 1.7                | 207.8 ± 7.2                   |
| N-117         | 183.6 ± 2.7       | 38.2 ± 2.5                | 174.7 ± 10.5               | 173.6 ± 8.6          | 34.5 ± 1.8                | 214.0 ± 8.7                   |
| N-120         | 264.8 ± 1.9       | 38.5 ± 0.9                | 216.9 ± 7.5                | 261.8 ± 4.2          | 35.3 ± 1.8                | 245.9 ± 11.3                  |
| ETFE 50 μm D  | 49.6 ± 0.7        | 58.0 ± 3.3                | 343.5 ± 14.6               | 52.9 ± 0.7           | 51.7 ± 3.2                | 358.1 ± 21.0                  |
| ETFE 50 μm SG | 51.4 ± 1.2        | 53.1 ± 2.2                | 333.8 ± 15.8               | 51.7 ± 0.7           | 52.2 ± 3.3                | 414.8 ± 21.5                  |
| S/AN D        | 62.2 ± 1.6        | 46.9 ± 1.8                | 154.2 ± 10.6               | 62.3 ± 2.3           | 48.4 ± 2.6                | 166.5 ± 12.7                  |
| S/AN SG       | 62.6 ± 0.7        | 49.7 ± 2.1                | 165.3 ± 12.0               | 66.0 ± 0.6           | 47.2 ± 1.2                | 165.8 ± 8.3                   |
| S/AN/DiPB D   | 66.4 ± 0.8        | 44.6 ± 1.1                | 115.1 ± 6.2                | 68.0 ± 0.7           | 43.0 ± 0.6                | 111.8 ± 2.1                   |
| S/AN/DiPB SG  | 69.6 ± 1.1        | 43.7 ± 1.0                | 98.5 ± 2.7                 | 70.3 ± 0.7           | 41.9 ± 0.6                | 92.5 ± 6.6                    |

![](_page_21_Picture_0.jpeg)

| Membrane     | Machine Direction |                                  |                                    | Transverse Direction |                                  |                                    |
|--------------|-------------------|----------------------------------|------------------------------------|----------------------|----------------------------------|------------------------------------|
|              | Thickness (μm)    | Tensile<br>strength (MPa)        | Elongation at<br>Break (%)         | Thickness (μm)       | Tensile<br>strength (MPa)        | Elongation at<br>Break<br>(%)      |
| NR-211       | $29.4 \pm 0.3$    | $12.9 \pm 1.7$                   | $62.7 \pm 16.0$                    | $29.2 \pm 0.2$       | $13.8\pm2.1$                     | $69.5 \pm 20.5$                    |
| N XL-100     | $35.8 \pm 0.4$    | $26.6 \pm 2.2$                   | $61.9 \pm 28.0$                    | $36.1 \pm 0.3$       | $25.5 \pm 1.3$                   | $96.3 \pm 18.4$                    |
| NR-212       | $63.4\pm0.7$      | $13.3\pm5.1$                     | $\textbf{77.3} \pm \textbf{50.0}$  | $63.8 \pm 0.9$       | $12.8\pm3.4$                     | $\textbf{72.1} \pm \textbf{34.0}$  |
| N-1035       | $109.6\pm2.8$     | $19.8\pm2.8$                     | $84.2 \pm 15.1$                    | $108.5\pm5.8$        | $16.1\pm2.1$                     | $117.9 \pm 19.6$                   |
| N-1135       | $101.2\pm2.2$     | $\textbf{21.1} \pm \textbf{1.2}$ | $93.5\pm8.4$                       | $102.0\pm2.4$        | $17.4\pm2.0$                     | $121.4\pm19.0$                     |
| N-105        | $143.0\pm1.9$     | $23.6 \pm 1.5$                   | $115.9\pm9.0$                      | $140.5\pm2.2$        | $18.5\pm1.2$                     | $140.6\pm9.8$                      |
| N-115        | $149.6\pm3.8$     | $\textbf{22.3} \pm \textbf{1.5}$ | $114.7\pm9.2$                      | $151.4\pm1.8$        | $18.5\pm2.4$                     | $111.8\pm20.6$                     |
| N-117        | $195.0\pm3.6$     | $19.2\pm3.0$                     | $101.5\pm22.7$                     | $197.7\pm8.6$        | $18.2\pm3.1$                     | $119.4\pm28.3$                     |
| N-120        | $294.5 \pm 4.4$   | $21.8 \pm 2.2$                   | $137.3\pm21.5$                     | $290.1\pm2.2$        | $21.2\pm0.6$                     | $160.5\pm6.6$                      |
| S/AN D       | $86.5 \pm 2.4$    | $33.8 \pm 4.7$                   | $\textbf{225.9} \pm \textbf{22.9}$ | $84.6\pm3.1$         | $\textbf{31.1} \pm \textbf{2.8}$ | $\textbf{226.7} \pm \textbf{16.1}$ |
| S/AN SG      | $85.3\pm3.5$      | $\textbf{27.0} \pm \textbf{4.1}$ | $189.1\pm30.5$                     | 90.1 ± 1.7           | $26.5 \pm 6.7$                   | $\textbf{212.8} \pm \textbf{54.8}$ |
| S/AN/DiPB D  | 73.7 ± 3.7        | 28.1 ± 2.1                       | $116.9\pm11.4$                     | 78.0 ± 1.3           | 22.8 ± 3.5                       | $101.1\pm24.4$                     |
| S/AN/DiPB SG | 82.7 ± 1.6        | $25.3\pm3.0$                     | $106.6\pm18.3$                     | 82.2 ± 2.2           | 22.7 ± 2.4                       | $106.2\pm17.9$                     |