

Wir schaffen Wissen – heute für morgen

Paul Scherrer Institut

L. Gubler, A. Albert, Y. Buchmüller, O. Nibel, L. Bonorand

Radiation Grafting: Tailored Ion-conducting Membranes for Electrochemical Applications

Content

Introduction

Radiation grafted membranes

Introducing Antioxidants

- Polymer-bound phenolic antioxidants
- Accelerated stress tests in the fuel cell
- Regeneration strategy PFSA vs. hydrocarbon membranes ?

Beyond Fuel Cells

Conclusion

Advances in Polymers for Fuel

Cells and Energy Devices

Acknowledgement

A. Albert PhD student

L. Bonorand senior engineer

PAUL SCHERRER INSTITUT

Y. Buchmüller former PhD student

O. Nibel PhD student

Technical support:

Jürg Thut

Funding:

Swiss National Science Foundation

Radiation Grafted Membranes

Radiation Grafted Membranes

Performance & Durability of Grafted Membranes

HO• Radical Attack

L. Gubler et al., *J. Electrochem. Soc.* **158** (2011) B755 S.M. Dockheer et al., *PCCP* **15** (2013) 4975

Introduction of Polymer-bound Antioxidants

Introducing Antioxidant (HO• Scavenger)

unlikely to attack polymer

*Z. Rappoport, The Chemistry of Phenols, John Wiley & Sons, 2003

Introduction of Antioxidant Functionality

covalent tethering of phenol type antioxidant (AO) to graft copolymer:

Y. Buchmüller et al., J. Mater. Chem. A 2 (2014) 5870

Grafted Antioxidant

- low yield of tyramination of 33% (side reactions)
- poor fuel cell performance

- superior co-grafting kinetics
- vield of tyramination: 56%
- good fuel cell performance (better than pure styrene based)

Grafted Antioxidant

Extended Accelerated Chemical Stress Test

Antioxidant Strategies

PFSA

incorporate transition metal redox couples (Mn²⁺/Mn³⁺, Ce³⁺/Ce⁴⁺) or corresponding oxides to **scavenge** HO[•]:

e.g.: Ce³⁺ + HO• + H⁺ \rightarrow Ce⁴⁺ + H₂O k = 3·10⁸ M⁻¹s⁻¹, lifetime of HO• in PFSA ~ μ s

 $\begin{array}{l} \text{regeneration of } Ce^{3+}:\\ Ce^{4+} + H_2O_2 \rightarrow Ce^{3+} + HOO^{\bullet} + H^+\\ \text{with } [H_2O_2] = 0.5 \text{ mM: } \tau \cong 1 \text{ ms} \end{array}$

catalytic HO• scavenging

J. Electrochem. Soc. 159 (2012) B211

Hydrocarbon based

HO• reacts rapidly with aromatic units ($\tau \cong$ ns), need much more effective scavenger, e.g., phenol type H-donor ($k \approx 10^{10} \text{ M}^{-1} \text{s}^{-1}$):

 $PhOH + HO^{\bullet} \rightarrow PhO^{\bullet} + H_2O$

PhOH is depleted over time. Could it be regenerated ?

- Regeneration by H₂O₂ unlikely for energetic reasons (thermodynamics, kinetics)
- Repair by reductive power of the anode (~0-50 mV) ?

Repair of Spent Phenol Type Antioxidant by H₂O₂?

PhO[•] + H₂O₂ → PhOH + HOO[•] (mild oxidant) [H₂O₂] in operating fuel cell ~0.5 mM ¹

¹ W. Liu, D. Zuckerbrod, J. Electrochem. Soc. **152** (2005) A1165

Repair through e⁻ Provided by the Anode ?

Polymerization of Pyrrole (Py) into Membrane

Buchmüller et al., ChemElectroChem (2015) in press (doi: 10.1002/celc.201402332)

Electrochemical Response

fuel cell configuration:

Buchmüller et al., ChemElectroChem (2015) in press

Use Alternative Antioxidant Chemistry ?

use hindered phenol:

butylated hydroxytoluene (BHT) well known in plastics industry

hindered amine light stabilizers (HALS)* ?

Antioxidant Mechanism and Strategy

Beyond Fuel Cells

Electrochemical Devices with Polymer Electrolytes

Electrolysis

- water electrolysis for high purity H₂ production
- H₂ for fuel cell vehicles
- renewables: storage of excess electricity ("power-to-gas")

Flow batteries

- grid-scale storage of electricity
- decoupled energy and power rating

Lithium batteries

- consumer electronics
- electromobility
- load leveling, peak shaving

Membranes for Water Electrolysis

Figure of merit:	$\frac{1}{R_{\Omega} \cdot i_{x}}$ (in 10 ⁻³ /V)
Nafion®:	5.8 ± 1.3
Grafted membra	nes: 12.6 ± 3.7

low-cost
(5-10 x cheaper than state-of-the-art)

- Iow H₂ and O₂ crossover through crosslinked polymer architecture
- mechanically robust to 100°C and creep resistant (semicrystalline polymer, crosslinked graft component)

EU-Project NOVEL

Vanadium Barrier in VRB

European Patent Application EP15154151

0.8

0.6

Polysulfide Shuttle in the Li-S Battery

Conclusion

- Radiation grafted membranes can reach promising performance / durability attributes compared to PFSA membranes
- Membranes with polymer-bound antioxidants show considerably improved stability
- However, the phanol type antioxidants are depleted. What antioxidant strategies need to be adopted for hydrocarbon membranes ?
- Through adapted design, membranes with improved barrier properties can be synthesized for the water electrolyzer, redox flow cell, and lithium-sulfur battery

