TR A5374

Preliminary evaluation of fuel cells

Nils Arild Ringheim

December 2000

	ਗ਼ਗ਼ਗ਼ਗ਼	TECHNICAL REPORT							
Energy	VILLU y Research	SUBJECT/TASK (title)							
SINTEF Energy Research		Preliminary evaluation of fuel cells							
Address:	NO-7465 Trondheim, NORWAY								
Reception:	Sem Sælands vei 11	CONTRIBUTOR(S)							
Telefax:	+47 73 59 72 00 +47 73 59 72 50	Nils Arild Ringheim							
http://www.energy.sintef.no		CLIENTS(S)							
Enterprise No.: NO 939 350 675 I	MVA	Norges Forskningsråd							
TR NO.	DATE	CLIENT'S REF.	PROJECT NO.						
A5374	2000-12-01	Else Boon	12X127						
ELECTRONIC FILE CODE		RESPONSIBLE (NAME, SIGN.)	CLASSIFICATION						
011128nar12344	9	Nils Arild Ringheim	Unrestricted						
ISBN N0.	REPORT TYPE	RESEARCH DIRECTOR (NAME, SIGN)	COPIES	PAGES					
82-594-2006-6		Petter Støa	8	5					
DIVISION		LOCATION	LOCAL FAX						
SINTEF Energife	orskning AS	Sem Sælands v. 11	+47 73 59 72 50						
RESULT (summary)									

This report makes a short overview of common fuel cell technologies and their main properties. In addition, a status regarding stationary and transportation applications for different fuel cell types is given. To some extent, a comparison between different fuel cell technologies regarding their suitability for specific applications is done.

Fuel cells are electrochemical devices that convert the chemical energy of a fuel directly into electric energy. An often used classification of fuel cells are based on operating temperature:

Low temperature cells:

- AFC (Alkaline fuel cell)

PEMFC (Proton exchange membrane fuel cell)

DMFC (Direct methanol fuel cell)

High temperature fuel cells

PAFC (Phosphoric acid fuel cell)

SOFC (Solid oxide fuel cell)

MCFC (Molten carbonate fuel cell)

The low temperature fuel cells are characterized by quick start-up time compared to high temperature cells. However, catalysts are needed in order to speed up the electrode process of the low temperature alternatives. Especially for the PEMFC and DMFC, these catalysts are expensive and susceptible to impurities in the fuel. The AFC is sensitive to CO_2 impurities in the fuel due to possible reaction with electrolyte into solid carbonate.

The high temperature fuel cells have flexibility to use more types of fuels and inexpensive catalysts, as the reactions involving breaking of carbon to carbon bonds in larger hydrocarbons occur much faster at higher temperatures. However, the high temperature enhances corrosion and breakdown of cell components. High temperature fuel cells are well suited for cogeneration applications, increasing the overall efficiency of the fuel cell system. Some high temperature systems also combine the use of fuel cell and gas turbine, maximizing the electrical output from the total fuel input. Both MCFC and SOFC are candidates, but SOFC systems are regarded as near time products. Efficiencies in the range of 60 to 75 MW are expected.

KEYWORDS								
SELECTED BY AUTHOR(S)	Fuel cells	Overview						
	Application	Comparison						

TABLE OF CONTENTS

P	age
	-

2

1 SUMN	1ARY	
2 INTRO	DDUCTION	5
2.1 FUI	EL CELL DESCRIPTION	5
2.2 FUI	EL CELL VOLTAGE AND EFFICIENCY	6
2.2.1	Ideal fuel cell voltage	6
2.2.2	Actual fuel cell voltage	6
2.2.3	Energy conversion efficiency	7
3 OVER	VIEW AND COMPARISONS	
3.1 EL	ECTROCHEMICAL REACTIONS	
3.2 PR	OPERTIES	
3.2.1	Low/high temperature fuel cells	
3.2.2	Different types of electrolyte suitable for vehicle applications	
3.2.3	AFC vs PEMFC	
3.2.4	PEMFC vs PAFC (Stationary power applications 1-10 MW)	
3.2.5	Catalyst challenges	
3.2.6	Fuel cell voltage and current densities	
3.2.7 Fuel c	ells combined with gas turbines	
3.3 CO	ST	17
3.3.1	System cost targets	
4 APPL	CATIONS	19
4.1 STA	TIONARY POWER SYSTEMS	19
4.1.1	PAFC	19
4.1.2	PEMFC	19
4.1.3	SOFC	19
4.1.4	MCFC	
4.2 POV	VER SYSTEMS FOR TRANSPORTATION SECTOR	
4.2.1	PAFC	
4.2.2	PEMFC	
4.2.3	SOFC	
4.2.4	AFC	
4.2.5	MCFC	
4.2.6	DMFC	
4.2.7	Relevant companies	
4.2.8	Fuel cells in automobiles	
4.3 NO	RWEGIAN INSTALLATIONS	
5 RECO	MMENDED LITERATURE	
6 LITER	CATUKE KEFEKENCES	
APPENDIX A	A DEFINITIONS AND TERMINOLOGY	

1 **SUMMARY**

This report makes a short overview of common fuel cell technologies and their main properties. In addition, a status regarding stationary and transportation applications for different fuel cell types is given. To some extent, a comparison between different fuel cell technologies regarding their suitability for specific applications is done.

Fuel cells are electrochemical devices that convert the chemical energy of a fuel directly into electric energy. An often used classification of fuel cells are based on operating temperature: Low temperature cells:

- AFC (Alkaline fuel cell)
- PEMFC (Proton exchange membrane fuel cell)
- DMFC (Direct methanol fuel cell)
- *High temperature fuel cells*
- PAFC (Phosphoric acid fuel cell)
- SOFC (Solid oxide fuel cell)
- MCFC (Molten carbonate fuel cell)

The low temperature fuel cells are characterized by quick start-up time compared to high temperature cells. However, catalysts are needed in order to speed up the electrode process of the low temperature alternatives. Especially for the PEMFC and DMFC, these catalysts are expensive and susceptible to impurities in the fuel. The AFC is sensitive to CO₂ impurities in the fuel due to possible reaction with electrolyte into solid carbonate.

The high temperature fuel cells have flexibility to use more types of fuels and inexpensive catalysts, as the reactions involving breaking of carbon to carbon bonds in larger hydrocarbons occur much faster at higher temperatures. However, the high temperature enhances corrosion and breakdown of cell components. High temperature fuel cells are well suited for cogeneration applications, increasing the overall efficiency of the fuel cell system. Some high temperature systems also combine the use of fuel cell and gas turbine, maximizing the electrical output from the total fuel input. Both MCFC and SOFC are candidates, but SOFC systems are regarded as near time products. Efficiencies in the range of 60 to 75 MW are expected.

A summary of some important fuer cent characteristics is given in the table below.												
Fuel cell system	Electrolyte	Operating	Efficiency	Fuel	Reforming	Oxidant	Impurity	Current	Power density	Lifetime	Scale	Applications
		temperature	[%]					density	[mW/cm ²]	[hour]		
		[°C]						[mA/cm ²]	(present future)	(projected)		
PAFC	Concentrated	200 [1]	40-50	Hydrogen,	External	Oxygen,	CO, H ₂ S ^[4]		200 250 ^{[4] 1)}	>40000 [4]	200 kW -	Small utility
Phosphoric acid	phosphoric acid	190 [2]	40 [4]	natural gas,		air					10 MW ^[2] 100	(cogeneration units
fuel cell	(H_3PO_4)	160-200 [4]		methanol [4]							kW-5 MW ^[4]	(heat 60-120 °C))
PEMFC	Polymer	80	40-50	Hydrogen,	External	Oxygen,	CO, H ₂ S ^[4]	1000 (@	350 >600 [4]	>40000 [4]	1 kW – 1 MW ^[4]	Mobile applications,
Proton exchange	-	80-90 [4]	45 [4]	methanol [4]		air		0,7 V) ^{[2] 2)}	-	20000 [12]	100W - 10 MW	small utility, military,
membrane fuel cell											[2]	space missions
SOFC	Ceramic (solid	900-1000 [1]	50-60 [1]	Hydrogen,	External,	Oxygen,	H ₂ S ^[4]		240 300 [4]	>40000 [4]	100 kW - 100	Utility (cogeneration
Solid oxide fuel	electrolyte)	1000 [2]	>60 [2]	natural gas,	internal	air					MW ^[4] >100	units, power plants)
cell		800-1000 [4]	>50 [4]	coal ^[4]							MW ^[2]	
AFC	KOH/H ₂ O	80 [1]	40-60 [1]	Pure	N/A	Pure	CO ₂ ^[4]	200 400	100-200 >300	>10000 [4]	10 – 100 kW ^[4]	Aerospace, military,
Alkaline fuel cell		80-200 [2]	40-50 [2]	hydrogen ^[4]		oxygen	CO, CH ₄ ,	[18]	[4]	10000 [12]	$100 \mathrm{W} - 20 \mathrm{kW}$	stationary
		60-90 [4]	40 [4]				H_2S	(@0,67 V)			[2]	
MCFC	Molten salt (Li	650 [2]	50-60 [1]	Hydrogen,	External,	Carbon	S, H ₂ S,		100 >200 [4]	>40000 [4]	1 – 100 MW ^[4]	Utility (cogeneration
Molten carbonate	and K carbonate)	660 [4]	>60 [2]	natural gas,	internal	dioxide,	HCl, HBr,				>100 MW ^[2]	units, power plants)
fuel cell			50-75 [4]	coal ^[4]		oxygen,	HF ^[4]					
						air						
DMFC ^[3]	Polymer	50-90 [3]	40 ^[1] , 30 ^[4]	Methanol ^[4]	Internal	Oxygen,			40 >100 [4]	>10000 [4]	1 – 100 kW ^[4]	Military
Direct methanol	-	60 [21]	45 [21]			air			240 - [23]			
fuel cell			(increase with									
			higher term)									

Α.		`	montout f	21	a a 11	alaamaatamia	tian	:-			+1. a	4-1-1-	halarr.
A	summary of	some in	iportant I	uer	cen	cnaracteris	ucs	IS J	given	m	the	ladie	below.

Projected power density: 0,12 kW/kg and 0,16 kW/L [4] Power density: 1 kW/l [2]

PAFC is the only fuel cell technology, which offers a commercial product for stationary applications. (ONSI P25: 200 kW_{el}, 205 kW_{thermal}). Several hundreds test sites exists around the world, and the recorded operation experience is considerable. The PAFC has, however, low current and power densities, resulting in large size and weight and less suitable for automotive applications.

AFC was first used in space applications several decays ago, but no commercial product exists yet. Several demonstration projects exist based on a 5 KW unit, manufactured by the European company ZeTek.

Present R&D funding of PEMFC is considerable, i.a. because it has been regarded as a promising candidate for automotive vehicles. Several demonstration sites exist, mostly on automobiles, but also some on stationary applications (Ballard: 250 kW_{el}).

The SOFC is primarily discussed for stationary applications. Two prototypes are built from Siemens Westinghouse today (one 110 kW_{el} and 64 kW_{th}, one 220 kW_{el} SOFC combined with a gas turbine) using a tubular technology. Other manufacturers are exploiting planar technology as well, but no demonstration sites exist yet.

A demonstration unit of a stationary MCFC exist (260 kW_{el}) produced by a European consortium. In addition, MCFC field test sites exist in USA (e.g. one 2000 kW_{el} by Energy Research Corporation).

The DMFC might be a promising candidate for automotive applications, but its development lies 5-10 years behind the PEMFC.

As a general comment to fuel cells, the technology is still quite expensive compared to alternative technologies. In addition, little or no information can be found on the dynamic behaviour of fuel cells in literature. Therefore, it is difficult to predict the need for possible parallel energy storages, converter characteristics etc. depending on the different load characteristics.