
1 INTRODUCTION 
 
In Norway, there is a trend among electricity distri-
bution companies towards using risk assessment for 
decision support in their asset management – see e.g. 
(Nordgård et al. 2005; Istad et al. 2008). The distri-
bution company risks cover many consequence cate-
gories, incorporating tangible as well as intangible 
risks, e.g. safety, quality of supply (including reli-
ability), environmental impact and economy (Sand 
et al. 2007). 

Historically, risk assessment methods concerning 
reliability analyses in power systems have been 
given much attention, with numerous methods avail-
able and still being developed – see e.g. (Billinton et 
al. 2001; Xie & Billinton 2009). 

However, for the other risk consequence catego-
riesthere has been a lack of structured analyses 
available. The electricity distribution companies 
therefore see the need to develop methods and tools 
to support decisions also within these areas. Risk 
analyses (for other purposes than reliability analy-
ses) are hence being developed, tried and evaluated 
– see e.g (Hamoud et al. 2007; Nordgård 2008; 
Nordgård & Sand 2008). 

This paper shows how quantitative risk assess-
ment (QRA) can be applied to analyze intangible 
risks, with special emphasis on approaches for in-
cluding uncertainty in the analyses. It first gives a 
brief description of risk and uncertainty in electricity 
distribution – stating the basis for how we look at 
uncertainty in this context. It further presents three 
approaches for exploring uncertainty in QRA. The 
approaches are exemplified through a case where a 
bow-tie model is used to analyze environmental risk 

related to accidental emissions of transformer oil. 
The paper concludes with some remarks concerning 
what can be achieved through exploring uncertainty 
explicitly in risk analyses. 

2 RISK-INFORMED DECISION MAKING IN 
ELECTRICITY DISTRIBUTION 

2.1 Risk decision problems 

Almost every activity will include risk, and even 
though striving to reduce it, it will be impossible to 
achieve a complete elimination of risk. Hence we 
will always face the problem of what is acceptable 
risk (Fischhoff et al. 1981; Vatn 1998). 

In electricity distribution asset management, we 
want to use risk assessment as a tool to analyze risk, 
to provide increased understanding of the risk prob-
lem and to structure and document the results. The 
aim is to provide input to the decision making proc-
ess, where the acceptable risk problem is addressed. 

2.2 Uncertainty 
Uncertainty – the fact that there are things that we 
do not know – is a prerequisite for risk, and should 
be kept in mind throughout risk assessment and de-
cision making. 

Like ‘risk’, the term ‘uncertainty’ is used with 
different interpretations in the risk analysis society. 
In some contexts a distinction is made between deci-
sion made under uncertainty (meaning decision 
situations with unknown probability distributions), 
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and decision made under risk (meaning decision 
situations with known probability distributions). 

If we should have used this terminology for deci-
sion making concerning intangible risk in electricity 
distribution systems, we would most probably be 
talking about ‘decisions under uncertainty’ – since 
the knowledge and data available rarely will provide 
known probability distributions. However, the 
broadly accepted term for such analyses is risk 
analyses, and hence we shall use this term in this 
paper. 

In other contexts we encounter the distinction be-
tween aleatory uncertainty (due to the stochastic na-
ture of a process or system) and epistemic uncer-
tainty (due to our lack of knowledge) – see e.g. 
(Stamatelatos et al. 2002). This distinction can be 
useful to recognize the fact that even with ‘perfect’ 
information available, there will still be uncertainty 
related to our decisions – i.e. that the decision mak-
ing process will not converge into a deterministic 
analysis no matter the extent of our knowledge. 

For the purpose of this paper we will not elabo-
rate further on distinction between the two concep-
tual parts of uncertainty, and will address uncer-
tainty in a common term – representing the fact that 
we do not know, focusing on uncertainty in risk 
analysis input parameters. This use of the term is in 
line with e.g (Aven 2008). 

2.3 Setting the scene for distribution system asset 
management 

The decision maker(s) in distribution system asset 
management will typically be the asset manager(s) 
in the companies. Decision support is needed to ad-
dress risk in a structured manner. 

One challenge when analyzing intangible risks 
within electricity distribution is that there is little 
experience with such analyses, and hence a lack of 
analyzing competence. 

Another challenge is the availability of data to 
use in the risk analyses. Our experience indicates 
that relevant historical data are hard to find when 
addressing intangible risks (Nordgård et al. 2005). 
Promoting the hunt for data is a task that should also 
be addressed in the years to come, but we can not sit 
around waiting for “hard data” to arrive, because de-
cisions still have to be made.  

Expert judgment will hence be the input we can 
rely on, representing the best available knowledge 
based on system understanding and experience 
(Apostolakis 2004; Nordgård 2008). 

The input from distribution company experts may 
e.g. be elicited as: 

- “My best guess is that there is a 5-10% 
change for a failure on this component during 
the next year. But it might as well be twice 
this number.” 

- “I think that the introduction of this barrier 
will almost eliminate the chance of the most 
severe consequences – let’s say a barrier effi-
ciency of 95-100 %.” 

 
With this type of statements as basis for estimat-

ing numerical input to the risk analyses, there is an 
apparent need to investigate the “what-if’s” - i.e. to 
perform analyses where the effects of changing input 
parameters are investigated and evaluated. 

Our aim is to make the uncertainty of expert 
judgment explicitly included in the risk analysis, 
making the uncertainties a transparent part of the de-
cision making basis. 

2.4 Quantitative risk assessment as input to 
decision making 

Risk assessment is a central part of the process of 
providing input for decision making, and this can be 
performed using different types of methods - from 
qualitative to quantitative ones. 

In this paper we explore quantitative risk assess-
ment using a bow-tie model to analyze intangible 
risk – combining fault tree analysis and event tree 
analysis in order to establish the cause/effect rela-
tions describing a specific undesired event, see e.g. 
(Vatn et al. 1996). 

A conceptual bow-tie model is shown in Figure 1. 
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Figure 1  A conceptual bow-tie model. 
 
Bi represents basic initiating events in the fault tree 
analysis, leading to an undesired event, and Cj repre-
sents different possible end events resulting from the 
event tree analysis. CΣ are the aggregation of the 
consequences of all end events into a common risk 
measure. 

2.5 Methods to explore the effects of uncertainty in 
risk analyses 

The motivation for exploring the effects of uncer-
tainty in risk analyses, are that we want to see how 
changes in input parameters will affect the risk 
analysis results; Will perturbations in input parame-
ters give significant impact on the result? Will the 



ranking of decision alternatives change as a conse-
quence of this? 

In the risk literature there are launched a variety 
of approaches to investigate the impact of uncer-
tainty in risk analyses – see e.g. (Aven 1992; Aven 
2008). Three approaches are described in the follow-
ing, and exemplified in the case later in this paper, 
namely: 

- Reliability importance measures 
- Sensitivity analysis 
- Monte Carlo simulations. 
 
The approaches are chosen due to the fact that 

they represent different ways of addressing the prob-
lem requiring different computational efforts. 

2.5.1 Reliability importance measures 
Reliability importance measures can be used in risk 
analysis to provide information concerning how the 
system will behave with regards to changes in input 
parameters. A variety of different measures have 
been developed. Two classic measures are briefly 
commented in the following. 

 
Improvement potential 

The improvement potential, IA
i is given by the fol-

lowing equation: 
 hhI i

A
i −=  (1) 

where h is the reliability of the system and hi is 
the reliability assuming that component i is in the 
best state (Aven 1992). 

IA
i hence expresses the systems improvement po-

tential if element i in the risk model is replaced with 
a failure-free element. 

 
Birnbaum’s measure 
Birnbaum’s measure of reliability, IB

i, is given by 
the following equation: 

 
i

B
i p

hI
∂
∂

=  (2) 

To compute IB
i the following formula is often 

used: 
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B
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where h(·i,p) = h(p1,p2,..,pi-1,·, pi+1,..,pn) (Aven 
1992). IB

i expresses the system’s sensitivity with re-
gards to changes in element i and is hence a measure 
for how small changes in parameter i will affect the 
system. 

IA
i and IB

i can both provide information concern-
ing the robustness of the obtained solutions and 
where to look for efficient ways of reducing risk. 

2.5.2 Sensitivity analysis 
Sensitivity analysis is performed using performing 
repetitive analyses where model parameters are 
changed, to investigate how the changes affects the 

risk results and hence get information concerning 
the robustness of the obtained solution. 

Results from reliability importance measures can 
provide input concerning which parameters to inves-
tigate closer in sensitivity analyses. 

For the purpose of this paper we only look into 
single parameter sensitivity analyses, i.e. the effects 
of changing one parameter at the time. 

2.5.3 Monte Carlo simulations 
In Monte Carlo simulations input parameters are 
represented by probability distributions, and the re-
sults are obtained through calculations sampling 
from these distributions. 

Monte Carlo simulation will require higher mod-
elling efforts compared to sensitivity analyses. For 
the purpose of this paper we look at Monte Carlo 
simulations where several input parameters are mod-
elled using probability distributions. 

In our case, the expert’s judgments are translated 
into probability distributions which again are the ba-
sis for parameter sampling in the simulations. 

3 ILLUSTRATIVE CASE 

We use a case to illustrate the use of methods to ex-
plore uncertainty in QRA as input in electricity dis-
tribution decision making. The case is based on a 
quantitative risk assessment model established in 
(Nordgård & Solum 2009), being further elaborated 
for the purpose of this paper. It is emphasised that 
the case is for illustrative purposes only and that it 
does not represent the decision basis for a real deci-
sion. 

For the analysis we use a bow-tie model combin-
ing fault tree and event tree analysis. 

3.1 Problem description 
Distribution transformers are located throughout the 
electricity distribution system, containing typically 
150-300 litres of oil depending on their size and rat-
ing. The oil which is used in the majority of distribu-
tion transformers is considered a potential threat to 
the environment and to human health. The case 
evaluates environmental and health risk related to 
potential oil spill from distribution transformers lo-
cated within the drainage basin of a drinking water 
reservoir. 

3.2 Numerical input to the risk modelling 
Due to the fact that it is hard to find statistical mate-
rial which can support the choice of numerical val-
ues to use in the modelling, we have to rely on input 
from expert judgment. All numerical data used in 
this case study is hence based on the judgment of 
company experts and the analyst. 



3.3 Fault tree analysis 
Through discussions with company experts two 
main failure modes have been identified: 

- Oil spill due to degradation of the transformer 
casing, and 

- Oil spill due to strokes of lightning destroying 
the transformer. 

With the first failure mode the transformer may 
still be working, and the oil spill can be detected by 
inspections. The second failure mode will destroy 
the transformer. These two failure modes can be 
modelled in a fault tree as shown in Figure 2, con-
tributing to the top event; “Oil spill from trans-
former”. 
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Figure 2  Fault tree - oil spill from transformer. 
 
The following information has been provided by 

company experts: 
- Approximately 1 - 5 out of 1500 transformers 

have a leakage due to degradation each year. 
- Approximately 2 – 3 out of 1500 transformers 

experience breakage due to lightning strokes 
each year. 

 
Based on this information the following ‘best es-

timates’ are chosen for the fault tree parameters: 
- qDegradation = 2.0·10-3 [events/year] 
- qLightning = 1.5·10-3 [events/year] 
 
where qDegradation and qLightning expresses the prob-

abilities for leakage due to casing degradation and 
lightning respectively. 

Assuming independence between the two basic 
events, the probability of occurrence for the top 
event is computed according to equation (4): 

 
LightningDegradLightningDegradspillOil qqqqq ⋅= −+  (4) 

 
This gives qOil spill = 0.0035. Given a case where a 

company have 25 transformers within a drinking wa-
ter drainage basin, this gives 0.0875 occurrences of 
the top event per year - i.e. one can expect the event 
occurring on average every 11 years. 

3.4 Event tree analysis 
In order to establish the event tree – see Figure 4 – 
the following barriers are considered, based on dis-
cussions with the company experts: 

- Whether an oil collector is present 
- Whether less than 10 litres of oil leaks 
- Whether the transformer is located near a wa-

terway (stream or river) leading directly to the 
drinking water reservoir. 

The amount of oil spilled can not be considered 
as an ordinary barrier, but rather a statement of pos-
sible outcome. 

Only substations located on the ground are 
equipped with oil collectors. The majority of trans-
formers in the area are pole-mounted arrangements, 
as shown in Figure 3. 

 

 
Figure 3  Pole-mounted transformer arrangement 

 
The following numerical estimates are chosen for 

these barriers: 
- qOil collector = 0.9, i.e only 10 % of the trans-

formers in the area have oil collectors 
- q< 10 liters = 0.8, i.e. in only 20 % of the cases 

the oil spill are less than 10 litres 
- qFar from waterway = 0.6, i.e. 60 % of the trans-

formers are located near a stream or river 
leading directly into the drinking water reser-
voir. 

The background for choosing these probability 
estimates is input from distribution company experts 
and the analyst. 

 
Based on the previous results from the fault tree 

analysis, the structure of the event tree in Figure 4 
and the probability estimates for the barriers, the re-
sults presented in Table 1 are obtained. 

We can see that the total expected oil spill within 
the drainage basin is estimated to be approximately 
12.1 litres/years. The most critical event (event 5) – 
with an oil spill of 250 litres – will expectedly occur 
every 26 years. 
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Figure 4  Event tree model for possible outcomes following the start event ‘Oil spill from transformer’ 

 
 

Table 1  Results from the event tree analysis _________________________________________________ 
End event   1   2   3   4   5   Sum _________________________________________________ 
Oil spill1)  0   1   10   100  250  - 
Freq.2)   0.009 0.006 0.009 0.025 0.038 - 
Time3),   114  159  106  40   26   - 
E(oil spill) 4) 0.0  0.0  0.1  2.5  9.5  12.1 _________________________________________________ 

1) Estimated oil spill of the end event, [Litres] 
2) Frequency of occurrence of end event I [year-1] 
3) Expected time between occurrences [years] 
4) Expected annual contribution to oil spill from end event i [Litres] 

3.5 Investigating uncertainty in input parameters 
The purpose of investigating the effects of uncertain 
parameters is to illustrate the effect of the changes in 
the risk analysis model, and to gain understanding 
and confidence in the risk analysis results. 

3.5.1 Reliability importance measures 
The risk analysis model is first analysed using im-
portance measures to analyze the impact of changes 
in the input parameters. 

 
Table 2  Calculated reliability importance measures for the  
input parameters ____________________________________________ 
Model parameter Improvement   Birnbaum 

potential, IA
i  measure IB

i ____________________________________________ 
qDegradation      6.9     3448.8 
qLightning      5.2     3448.8 
qOil collector     12.1      5.7 
q< 10 litre      11.6     6.2 
qFar from waterway    5.8     4.1 ____________________________________________ 

 
The improvement potential is the largest for the 

model parameter qOil collector. It should however be 
noted that the values for the improvement potential 
are dependent on the values chosen as the base case 
reference (the value of h in equation (1)). 

The Birnbaum measures indicate that the esti-
mated oil spill is clearly most sensitive to the 
changes in the two fault tree parameters qDegradation 
and qLightning, but since the failure probabilities here 
already are very small numbers – the improvement 
potential is not so large for these parameters. 

3.5.2 Sensitivity analyses 
In order to examine the effects of changing model 
parameters, sensitivity analyses are performed for 
low and high estimates for the input parameters. The 
analyses have been performed by repetitive calcula-
tions changing one parameter at the time – seeing 
how this affects the results. The results for low and 
high estimates are shown in Table 3, while the ‘best-
estimate’ results are given in Table 1. 

 
Table 3  Results from investigating the effects of uncertainty of 
input parameters – Low and High estimates __________________________________________________ 
     Parameter estimate  Sum annual oil spill, 

[Litres]  
     Low   High   Low  High __________________________________________________ 
qDegradation  1.0·10-3  3.0·10-3  8.6  15.5  
qLightning   1.33·10-3 1.67·10-3 11.5  12.7 
qOil collector  0.85   0.95   11.4  12.7 
q< 10 litres   0.6   1.0   9.2  15.0 
qFar from waterway 0.5   0.7   11.1  13.0 __________________________________________________ 

 
The variation in results (best estimates from Ta-

ble 1, and Low/high estimates from Table 3) are il-
lustrated in Figure 5. 
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Figure 5  Variation of E(annual oil spill) for low / best / high 
parameter values 

 
Figure 5 indicates that the largest variation is 

found for the high/low estimates for the parameters 
qDegradation and q<10 litres. 



3.5.3 Monte Carlo simulation 
A Monte Carlo simulation model is established to 
investigate the effect of simultaneous variation of 
input parameters. 

The simulation model is made using triangular 
distributions for the five input parameters stated in 
Table 3 with mean values equal to the best estimates 
and low and high values (Table 3) giving the low 
and high ends of the probability distributions. 

Results from a simulation of estimated annual oil 
spill are shown in Figure 6. The simulation was 
made using 1000 iterations sampling from the above 
given distributions for the five input parameters. 
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Figure 6  Monte Carlo simulation results of annual oil spill 
 
The centre of gravity for the results corresponds to 
the expected value we have computed earlier (12.1 
litres/year), but we have a widespread variation of 
results around this value – wider than what is ob-
tained when varying only one parameter at the time, 
as done in the sensitivity analysis. 

We can see from the results that the sensitivity 
analyses and the Monte Carlo simulations give a 
more balanced risk picture compared to only the ex-
pected values stated in Table 1. 

3.5.4 Evaluation of the initial results 
To evaluate the results – we use a taxonomy pro-
posed in (Wessberg et al. 2008) to evaluate the con-
sequences of potential accidental emissions. The 
taxonomy uses three consequence categories for 
ground water / water intake: 

- Moderate. No harm to water intake 
- Extensive: Water intake is temporarily pre-

vented 
- Serious: Water intake is prevented for the 

long-term 
 
Table 4 shows the risk categorisation. 

 
 
 
 
 
 
 
 

Table 4  Risk matrix – risk categorisation – based on Table 3 
(Wessberg et al. 2008) _________________________________________________ 

Moderate Extensive  Serious _________________________________________________ 
5 - More than once a month   II    I    I 
4 - More than once a year   II    I    I 
3 - More than once in 10 years  III    II    I 
2 - Once in a lifetime1)     IV    III    II 
1 - Situation is known2)     IV    IV    IV _________________________________________________ 

1) The lifetime of the industrial site 
2) It has happened sometimes somewhere 
 
The risk categories in Table 4 are classified as 

follows (Wessberg et al. 2008): 
- I: Risk elimination actions must be started 

immediately 
- II: Risk reduction needed. Proposals for ac-

tions as soon as possible. 
- III: Proposals for actions to risk reduction 

should be given within a year. 
- IV: No actions needed 
 
The estimated expected consequence for our case 

is regarded to be in the categories Moderate to Ex-
tensive, while the probability of occurrence is in 
categories 2 – 3. The investigated uncertainty in the 
risk results supports the choice of these categories. 

We can draw the conclusion that the risk can not 
be considered unconditionally acceptable, and pro-
posals for risk reduction should be considered – but 
that there is no need for immediate action. 

3.6 Decision alternatives 
To address this problem further the following deci-
sion alternatives have been identified for the risk 
analysis as means to reduce risk: 

- Alternative 1: Leave as is. (basis alternative) 
- Alternative 2: Redesign of transformer ar-

rangements to include oil-collectors. 
- Alternative 3: Relocation of transformers – 

location further away from waterways. 
- Alternative 4: Redesign of transformer 

earthing system – making it less exposed to 
lightning strokes. 

- Alternative 5: Replace transformers with new 
design with environmentally friendly insulat-
ing oil. This alternative is regarded to elimi-
nate the negative consequences from oil spill. 

The model parameters chosen for the alternatives 
are stated in Table 5, and the expected values of an-
nual oil spill for the chosen alternatives are illus-
trated in Figure 7. 

 
 
 
 
 
 
 



Table 5  Model parameters used for the different alternatives*  _____________________________________________ 
     Parameter estimates      
     Alt. 1   Alt. 2   Alt. 3    Alt. 4  _____________________________________________ 
qDegradatio    2.0·10-3  2.0·10-3  2.0·10-3  2.0·10-3 

qLightning   1.5·10-3  1.5·10-3  1.5·10-3  0.5·10-3 

qOil collector   0.9    0.1    0.9    0.9   
q< 10 litre oil   0.8    0.8    0.8    0.8   
qFar from waterway  0.6    0.6    0.1    0.6   _____________________________________________ 
 
* Alternative 5 eliminates the environmental impact of the transformer oil. The 
system reliability parameters for alternative 5 remain unchanged – i.e. equal to 
alternative 1. 
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Figure 7  E(annual oil emissions) for Alternatives 1-4 with par-
tial contribution from the different end events. 

 
The different alternatives can also be investigated 

with sensitivity analyses too see how the changes in 
parameter estimates will affect the results. 

Figure 8 shows an example on how changes in 
one parameter – in this case qLightning – influences the 
estimated expected annual oil spill. 
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Figure 8  E(annual oil emissions) for Alternatives 1-4 for low, 
best and high estimates of qLightning. 

 
The analysis clearly indicates that alternative 2 is 

the most efficient one with regards to risk reduction. 

3.7 Comments to the case 
The case illustrates some possibilities of exploring 
uncertainty in input parameters in a quantitative risk 
assessment model. 

The purpose of performing such analyses should 
be to provide the decision maker with information 
concerning the robustness of his or hers risk analysis 
results. It should also be emphasised that the risk 

analyses will provide indicative rather than absolute 
answers as illustrated by the results from the case. 

The risk analysis results should further be 
brought into a decision making process, where other 
aspects such as cost, reputational impact, etc. should 
also be included. The uncertainty in the risk analysis 
results should also be taken into account in the final 
decision making process. 

The final decision making process is not further 
elaborated in this paper. An example on how such 
decision support can be performed can e.g. be found 
in (Catrinu & Nordgård 2009). 

4 CONCLUDING REMARKS 

This paper has presented three different methods for 
how uncertainty in input parameters can be explored 
in quantitative risk analysis and how the results can 
be used to provide decision support. 

For the purpose of providing decision support in 
relatively simple QRA models in electricity distribu-
tion system asset management, sensitivity analysis 
will provide an efficient way to give useful informa-
tion with a relatively low computational effort. Reli-
ability importance measures can be used to give di-
rection of where to look for risk reducing measures, 
but it should be accompanied with sensitivity analy-
sis to illustrate the effect of the changed parameters. 
Monte Carlo simulation will give a broader risk pic-
ture, but it will demand more sophisticated model-
ling, and the results provided will not give signifi-
cantly more information compared to sensitivity 
analyses. 

What should be emphasised when exploring un-
certainty in QRA is highlighting the fact that risk 
analysis results are not objective, crisp values – but 
uncertain figures which are more or less sensitive to 
changes in model input parameters. 

We see that the results based on ‘best estimates’ 
will represent only part of the risk picture which the 
decision maker should be aware of. 

In practical application, a realistic ambition is to 
use risk analysis to increase the understanding of the 
risk problem, and to provide input to risk-informed 
decisions. It should be kept in mind that also other 
input than risk analyses are relevant in the decision 
making context. The risk analysis should hence 
never be the sole basis for making decisions, but 
rather contribute to making decisions risk-informed 
(Apostolakis 2004). Exploring uncertainty is an im-
portant part of this task. 
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