PowerTech Paper 285

Vulnerability framework

Risk and vulnerability analysis of power systems including extraordinary events

Vulnerability analysis

420 kV transmission network
Connected to neighbouring areas via one AC and two DC connections

Catastrophic

Risk and vulnerability	
evaluation	

	LOSCOENERIC
ſ	Risk matrix/ diagram
	Multi criteria decision analysis

Bow tie structure for identified threats, unwanted events, barriers and consequences

Threats might lead to power system failures through a chain of events

Barriers exist to avoid threats to develop into unwanted events and to prevent or reduce consequences

Approach

- Combining qualitative and quantitative techniques:
 - Bow-tie model
 - Based on expert judgement
 - Supported by power flow and dynamic analyses

Close cooperation with the power system operator

Bow tie model

Adequate mechanical

Consequences

dimensioning

Authors:

Oddbjørn Gjerde, Gerd H. Kjølle (SINTEF Energy Research) Nina K. Detlefsen, Geir Brønmo (Energinet.dk)

Contact information: Oddbjorn.Gjerde@sintef.no

Conclusions

Describes a framework for power system risk and vulnerability analysis

Illustrated with a simplified real case study with three identified unwanted events

It is hard to think of the unthinkable – one of the main challenges is to identify the vulnerable operational states and extraordinary events