Workshop DNV/NTNU 2011-09-27

Climate change and power systems

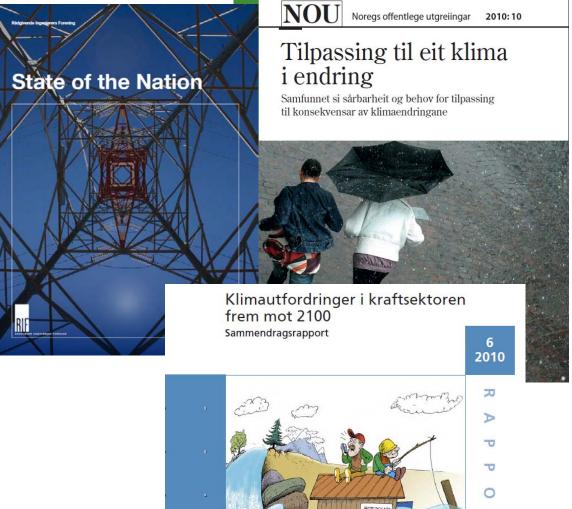
Oddbjørn Gjerde, SINTEF Energy Research

Outline

- Introduction and background
- Climatic vulnerability today
- Climate prognoses
- Impact of climate changes on power systems
- Adaptation to climate change

Introduction

- Infrastructure for production and supply of electric power is a **critical infrastructure**
- Society is totally dependent on a steady power supply
- Major interruptions may result in extensive societal consequences and threaten life and health
- Climate is expected to change...


Background

- Norwegian power supply is mainly based on hydro power
 -> climate changes will directly influence the generation potential
- An expected increase in temperatures will decrease the need for heating during the winter, but increase the need for cooling during the summer
- Power supply is required to operate during extreme weather conditions and therefore dimensioned accordingly
- At the same time: Weather related events are an important cause for faults and interruptions at all power system levels
- An expected increase in extreme events will increase the risk of damage, unless actions are taken

Sources of information

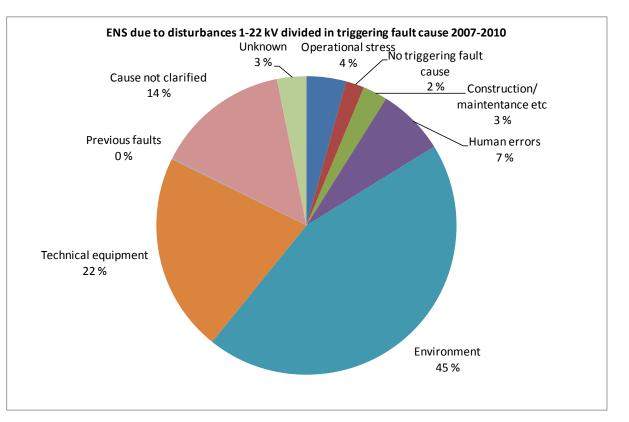
- NVE: Klimautfordringer i kraftsektoren frem mot 2100
- NOU 2010:10, Tilpasning til eit klima i endring
- RIF: State of the Nation
- Vestlandsforskning: Klimaendringenes konsekvenser for kommunal og fylkeskommunal infrastruktur

J

-

olada.nc

LAGER


Climatic vulnerability today

- About 50% of faults and outages in the distribution system are weather related
 - Lightning is the main cause
 - Vegetation, wind, snow and ice
- Infrastructure is well adapted to today's climate
- Preparedness towards weather related events is good
- Large parts of the power supply system were built during the 60-70- and 80-ies., thus an increasing need for reinvestments and renovation
- Vulnerability due to long delivery times for power system components

Many interruptions and a large amount of ENS is weather related – example 1 – 22 kV

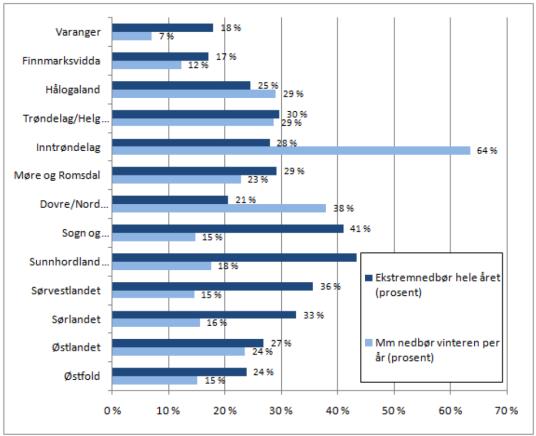
- Weather related stress:
 - Wind
 - Snow and ice
 - Salt/pollution
 - Lightning
 - Precipitation
 - Temperature
 - Vegetation

Climate prognoses

- Results from analyses carried out by Bjerknessenteret for year 2050, and compared with "Klima i Norge 2100" for NOU klimatilpasning.
- The following parameters are calculated:
 - Precipitation
 - Temperature
 - Freezing/ melting cycles
 - Wind
 - Icing
 - Change in sea level
- National and regional calculations
- Local calculations

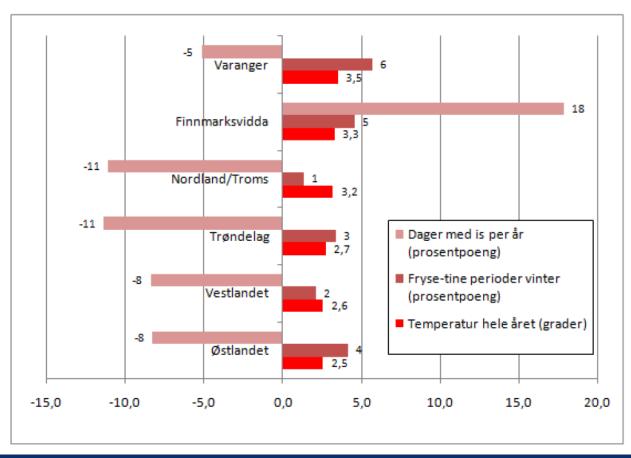
Climate prognoses 2050 1:2

- Precipitation: Increasing all over Norway
 - <u>Largest increase in Mid- and West-Norway,</u> <u>precipitation during winter may increase by 40%</u>
 - Least increase in Northern-Norway
 - Number of days with extreme precipitation is expected to increase
- <u>Temperature: Increasing all over Norway,</u>
 - Largest increase in North, particularly in winter
 - Least increase in South

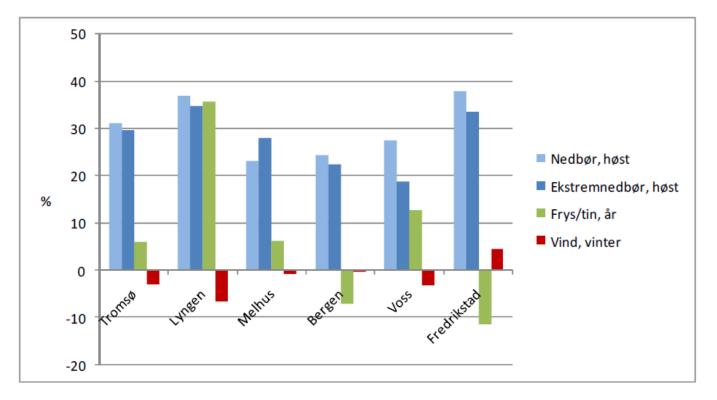


Climate prognoses 2050 2:2

- <u>Freezing/melting cycles:</u>
 - Increasing in Finnmark and high-lying areas
 - Reduction near the coast
- Drought periods: Uncertain results
- Wind: Large uncertainties and small effects makes it difficult to draw any conclusions
- Icing:
 - Increase in the inland
 - Decrease near the coast
- Sea level rise: From low to high, depending on area. High storm surges may be expected.



Precipitation (2050 compared with 1960-1991)



Temperature, freeze-melt and days with ice, (2050 compared with 1960-1991)

Local effects

Figur 43 Endringer for ulike klimaparametre i de utvalgte casekommunene i 2050 ifht perioden 1960-1991, basert på verstefallsscenario

Impact of climate changes on power systems 1:4

- Higher frequency and increasing strength or intensity of events
- New geographical areas may experience stresses which they are not exposed to today

- Possibly resulting in
 - Increased need for maintenance
 - Increased damage frequency

Impact of climate changes on power systems 2:4

Parameter	Strain	Possible impact
Wind	Extreme wind force	Damage to power lines and buildings, directly or by falling trees
	Catchment of salt	Flashover due to salt coating on insulators and bushings
	Storm surge, flooding	Challenging with respect to low-lying installations
Precipitation	Flooding	Exposed installations may be damaged
	Heavy snowfall	Causes mechanical strain on power lines, directly or because of vegetation/ trees. Snow slides may damage installations and buildings.
	Heavy rainfall	Landslides may damage installations and buildings
	Drought periods	Increased forest fire hazard, may damage installations and buildings

Impact of climate changes on power systems 3:4

Parameter	Strain	Possible impact
Temperature	Changes between freezing and melting	Frost weathering on concrete and stone constructions. May damage buildings, foundations, pylons etc.
	Higher ambient temperatures	Sagging lines may come in contact with vegetation.
	Higher ambient temperatures combined with more rain	Increased growth of vegetation
lcing	lcing and snow on power lines	Mechanical stress may cause damage or breakage of power lines

Impact of climate changes on power systems 4:3

- Coincidence in changes may cause additional challenges:
 - High air humidity combined with high temperature may cause rot (pylons, buildings)
 - Combination of high temperature, humidity and frequency of adverse weather could mean increased problems with lightning
 - Temperature and humidity influence growth of vegetation.
 - Snowfall and wind, or icing temperatures and wind, may lead to increased mechanical stresses
- Extreme weather may delay repair significantly, not at least if other infrastructures are involved

Adaptation to climate changes - challenges

- Knowledge, competence and training among the involved parties in societal security and preparedness is a good basis for dealing with climate changes
 - Possible lack of equipment and work force to deal with natural incidents
 - Easier to get resources to deal with accidents than for preventive work
 - Improvement potential in utilizing experience in work with societal security
- Need for government supervision of climate adaption
 - 24 % of the power companies have plans for adaptation to climate change. 31 % believe that they will not be affected.
 - NVE and DSB need to get climate changes and vulnerability higher on the agenda and to get resources to follow up
 - The need for a robust power system may require changes in the regulatory regime
- Time perspective for building of new power lines is long start planning early!
- Need for more research on power systems and climate changes

Positive proof of global warming

