

FLEXBUILD

Flexibility KPIs

Igor Sartori, PhD Workshop 23.09.2021

Research Centre on ZERO EMISSION NEIGHBOURHOODS IN SMART CITIES

Flexibility KPIs workshop

- Introduction: Need for flexibility KPIs in Flexbuild and ZEN
- Part 1: Flexibility KPIs per se
 - Flexibility definition
 - Flexibility sources, drivers, goals and proposed KPIs
 - Examples of results: two case studies
 - o Q/A
 - Breakout group work 1
- Part 2: Flexibility KPIs *links* with
 - Further examples of results
 - End-user and energy system perspectives
 - GHG emissions and Economy KPIs
 - o Q/A
 - Breakout group work 2

You will be assigned randomly into the breakout groups Please agree immediately who takes notes in each group! **Expected notes: keep it short and simple, thanks** ③

Flexibility KPIs workshop

- Introduction: Need for flexibility KPIs in Flexbuild and ZEN
- Part 1: Flexibility KPIs per se
 - o Flexibility definition
 - o Flexibility sources, drivers, goals and proposed KPIs
 - o Examples of results: two case studies
 - o Q/A
 - Breakout group work 1
- Part 2: Flexibility KPIs *links*
 - o Further examples of results
 - o End-user and energy system perspectives
 - o GHG emissions/Economy KPIs
 - o Q/A
 - Breakout group work 2

- Primary objective: to provide knowledge on <u>how</u> end-use <u>flexibility</u> available in the building stock will <u>impact</u> the development of <u>the overall energy</u> <u>system</u>.
- Objective O2: Assess <u>cost-optimal</u> investment and operation of the <u>energy system vs.</u> the financial optimal operation of the <u>private building owner</u>, and address possible mismatch between the two

SINTEF

FME Zero Emission Neighborhoods in Smart Cities ZEN definition

Category	Assessment criteria	KPI	Unit	Building (B), neighbourhood (N) or both (BN)	Standards & References	Strategic planning phase	Implementation phase	Operational phase
	Emission reduction	GHG1.1 Materials (A1-A3, B4)	kgCO _{2eq} /m ² heated floor area (BRA)/yr	BN	NS-EN 15978 (25), NS 3720 (26),	x	×	x
		GHG1.2 Clean construction (A4-A5)	kgCO _{2eq} /m ² heated floor area (BRA)/yr	BN	NS 3457-3 (29), NS 3451 (27)	x	×	x
		GHG1.3 Environmental management plan (B1-B3, B5)	kgCO _{2eq} /m ² heated floor area (BRA)/yr	BN		x	×	×
GHG		GHG1.4 Operational energy use (B6)	kgCO _{2eq} /m ² heated floor area (BRA)/yr	BN		x	×	x
		GHG1.5 Operational transport (B8)	kgCO _{2eq} /m ² heated floor area (BRA)/yr	BN		x	x	x
		GHG1.6 Circular neighborhoods (C1-C4)	kgCO _{2eq} /m ² heated floor area (BRA)/yr	BN		x	×	x
	Compensation	GHG1.7 Benefit and loads (D)	kgCO _{2eq} /m ² heated floor area (BRA)/yr	BN		x	×	x
	Energy efficiency in buildings	ENE2.1 Energy need	В	SN/TS 3031 (30), ISO 52000 (31)	x	×	x	
ENE	Energy carrier	ENE2.2 Delivered and exported energy	kWh/yr	BN	SN/TS 3031 (30), ISO 52000 (31), IFA FBC Appex 52 (32),	×	x	×
	/	ENE2.3 Self-consumption and self-generation	%	BN	ZEN research centre (2)	x	x	x
	Power performance	POW3.1 Peak load	kW	BN	Engineering praxis,	x	x	x
POW	1 /	POW3.2Peak export	kW	BN	ZEN research centre (2) IEA	x	x	x
POW	1 '	POW3.3 Utilisation factor	%	BN	EBC Annex 67 (33)	x	x	×
	1	POW3.4 Load flexibility]	J	x	x	x
MOB*	Mode of transport	MOB4.1 Green mobility	% share	N	NS-EN 16258 (34),	x	x	x
	Access	MOB4.2 Access to public transport and city centre	Meters	N	NS 3720 (26), CityKEYS 3.2.3 (9)	x	x	x
	1 /	MOB4.3 Car ownership		N	BREEAM Communities TM01,	x	×	x
	1 /	MOB4.4 Off-street parking		N	TM04, TM06 (8)	x	×	x
ECO*	Life cycle cost (LCC)	ECO6.1 Life cycle cost (LCC)	NOK	BN	NS 3451 (27), NS 3454 (35),			\square
			NOK/m ² heated floor area (BRA)/yr	В	NS-EN 16627 (36), ISO 15686-5 (37), Norsk prisbok (38)		x	x
			NOK/m ² outdoor space (BAU)/yr	N				
	!		NOK/capita	BN				
QUA*	Process	QUA5.1 Demographic analysis	qualitative	BN	BREEAM Communities GO01,	x	x	x
	1 /	QUA5.2 Stakeholder analysis	ļ'	N	SE02 (8)	x	x	x
	1 /	QUA5.3 Needs assessment	ļ!	N		x	x	x
	L/	QUA5.4 Consultation plan	!	N		x	x	x
	Urban form	QUA5.5. Urban accessibility	No. of categories	N		x	x	x
	1 /	QUA5.6 Street connectivity	Distance	N		x	x	x
	1 /	QUA5.7 Land use mix	Share of residents	N		x	x	x
	ļ′	QUA5.8 Centrality	Distance		×	×	×	
INN**	Euther developed in 201	/	<u> </u>					4

*These KPI's will be further developed in 20

Table 2. ZEN assessment criteria and Key Performance Indicators (KPIs)

**Assessment criteria and KPI's for the innovation category can be measured both quantitative and qualitative. The metodh and KPI's will be further developed in 2021.

- Evaluate the KPIs comparing two scenarios:
 > ZEN vs. Reference
- Assign dimensionless 'points' to each KPI
- Sum up according to a weighting system
 > Obtain an overall rating

ZEN category ratings	
Dark green	80-100%
Green	60-80%
Light green	40-60%
Grey	< 40%
Not assessed	-

ZEN KPIs for Energy and Power

Some KPIs are linked and affect each other. Examples:

- Total electricity / district heating use (ENE) is input to calculation of both emissions (GHG) and operatinal cost (ØKO)
- Dimensioning peak load (POW) influences both energy use (ENE) – and thus GHG, indirectly – and capital/operational costs (ØKO)

Flexibility KPIs still missing ...and so the link to GHG emissions

			A1-3 Product Stage			A4-5 C Proc	onstruction cess Stage	B1-7 Use Stage		se Stage				C1-4 End of Life				В	D enefits and loads		
				acturer		g site	lding		ransport)	rt)	ansport)	transport)	esn	se	rt use	molition	life				ding
	КРІ	Unit	Aaterial Supply	A2: Transport to Manufi	A3: Manufacturing	A4: Transport to buildin	ation into bui		B2: Maintenance (incl. t	r (incl. transpo	B4: Replacement (incl. t	B5: Refurbishment (incl	B6: Operational energy	ational water u	ational transpo	struction / de	port to end of	e Processing	sal		recovery, recy
ENE	ENE2.1 Energy need in buildings	kWh/m ² heated floor area (BRA)/yr	A1: Raw N				A5: Install	B1: Use		B3: Repai				B7: Opera	B8: Opera	C1: Decon	C2: Trans	C3: Waste	C4: Dispo:		D: Reuse,
	ENE2.2 Delivered energy	kWh/yr for each energy carrier and total.		<u>GHG1.1</u>		GHG1.2		GHG1.3			<u>GHG1.1</u> ΣB2-B4		GHG1.4	GHG1.5		GHG1.6					GHG1.7
	ENE2.3 Self-consumption and self- generation of electricity	%											POW								
POW	POW3.1 Peak load	kW	BN		BN BN pract		eering ces,	Figur infras	re 3. A	n ove ure. F	rview Result	of G s fror	HG KI n the E	PIs p Energ	er life 3 y, Pow	cycle ver an	of bui d Mo	ldings bility	s and categ	ori	es
	POW3.2 Peak export	kW		BN		ZEN research will feed into KPIs GHG1.4, GHG1.5 and GHG1.7, respectively centre [1],															
	POW3.3 Utilisation factor	%	BN		IEA EB	C Annex															
	POW3.4 Load flexibility Currently not de			veloped.		[5]															

ZEN Report No. xx - 2021 ENERGY AND POWER: ESSENTIAL KEY PERFORMANCE INDICATORS FOR ZERO EMISSON NEIGHBOURHOODS -An analysis of 6 pilot areas ZEN Report No. 32 - 2021 ZERO EMISSION NEIGHBOURHOODS IN SMART CITIES Definition, key performance indicators and assessment criteria: Version 2.0

- PART 1: Flexibility KPIs per se
- PART 2: Flexibility KPIs *links* with
 - end-user and energy system perspectives (Flexbuild goal)
 - GHG emissions/Economy KPIs (ZEN definition)
 - > Which is the hardest to tackle

PART 1

Flexibility KPIs per se

Flexibility KPIs workshop

• Introduction: Need for flexibility KPIs in Flexbuild and ZEN

- Part 1: Flexibility KPIs *per se*
 - \circ Flexibility definition
 - o Flexibility sources, drivers, goals and proposed KPIs
 - o Examples of results: two case studies
 - o Q/A
 - Breakout group work 1
- Part 2: Flexibility KPIs *links*
 - o Further examples of results
 - o End-user and energy system perspectives
 - o GHG emissions/Economy KPIs
 - o Q/A
 - Breakout group work 2

S.Ø. Jensen *et al.*, IEA EBC Annex 67 Energy Flexible Buildings, Energy and Buildings 155 (2017) 25–34 (<u>http://dx.doi.org/10.1016/j.enbuild.2017.08.044</u>):

The Energy Flexibility of a building is the ability to manage its demand and generation according to local climate conditions, user needs, and energy network requirements.

Timing for Energy Flexibility of buildings

 M.Z. Degefa, I.B. Sperstad and H. Sæle, Comprehensive classifications and characterizations of power system flexibility resources, Electric Power Systems Research, 194 (2021) 107022 (<u>https://doi.org/10.1016/j.epsr.2021.107022</u>):

SINTEF Energy flexibility in FME-ZEN and Flexbuild

- Energy flexibility is the ability of a building/neighborhood to manage its demand, storage and local generation to respond to external signals, while safeguarding user needs and comfort
- It results in load profiles on the grid that deviate from typical ones
- A large amount of flexibility is intrinsically available in the buildings' thermal mass and existing equipment, such as heat storage and the charging of EV (that mostly happens in buildings)
- Lacking automated control applications that exploit these flexibility sources

Flexibility value chain

• Some examples to get the context...

Ē

Flexibility value chain

Combination of implicit and explicit distributed flexibility

USEF: The Framework Explained

Energy flexibility of buildings (and neighborhoods) Characteristics of interest for us

- Focus on the on the effects of flexibility, not on the characteristics of flexibility itself
- Flexibility is:
 - o activated in response to external signals in a predictive way (not reactive)
 - o used to schedule optimal operation in pursue of different goals
 - o suitable for aggregators operating in day-ahead/intraday market
- ...could also be called **dispatchable demand**

Flexibility KPIs workshop

- Introduction: Need for flexibility KPIs in Flexbuild and ZEN
- Part 1: Flexibility KPIs per se
 - o Flexibility definition
 - Flexibility sources, drivers, goals and proposed KPIs
 - o Examples of results: two case studies
 - o Q/A
 - Breakout group work 1
- Part 2: Flexibility KPIs *links*
 - o Further examples of results
 - o End-user and energy system perspectives
 - o GHG emissions/Economy KPIs
 - o Q/A
 - Breakout group work 2

- Δ Energy
- $\Delta \text{ Cost}$
- Δ Energy Stress hours (Energy shifted)
- Δ Peak
- All given in % variation from the baseline

Flexibility sources, drivers, goals

SINTEF

Optimization based only on physical values of Energy and Power, completely independent from energy price and grid tariff

Flexibility KPIs workshop

- Introduction: Need for flexibility KPIs in Flexbuild and ZEN
- Part 1: Flexibility KPIs *per se*
 - o Flexibility definition
 - o Flexibility sources, drivers, goals and proposed KPIs
 - Examples of results: two case studies
 - o Q/A
 - Breakout group work 1
- Part 2: Flexibility KPIs *links*
 - o Further examples of results
 - o End-user and energy system perspectives
 - o GHG emissions/Economy KPIs
 - o Q/A
 - Breakout group work 2

Case 1: Apartments block

- 24 apartments, 1672 m²
- Regular, as in the stock
- Heating: Electric panels
- Flexibility sources:
 - DHW tank
 - Space Heating
 - EV (10 EVs \rightarrow 0.4 EV per household)

- Efficient, ca. TEK10
- Electric heater in ventilation, CAV
- Waterborne heating
- Heating: Ground Source Heat Pump + Electric Boiler
- Flexibility sources:
 - Space Heating

- February 2021
- Weather from Oslo/Blinders
- Spot price for NO1
- Time of Use price
 - Three levels: High, medium, low
 - High = Medium + 50%
 - Same shape every day
 - Daily average = spot monthly average

N.B. this is a 'proxy' indoor temperature in the model; it is NOT the same as the real indoor temperature in the building.The important is to look at its variations!

Apartment block:

• Typical load profiles from PROFet tool (energy demand load profile estimator)

Office Building:

 Building model with WCC (Weather Compensation Curve): when it is colder the water to the radiators gets warmer → as real building

Flexibility activation Office building – Space Heating – Cost minimization

Peak Power Monthly (PPM)

Energy Pricing (EP)

28 28 Baseline Baseline Upper limit Upper limit Temperature [C] 57 Temperature [C] 100 Space heating [kWh/h] heating [kWh/h] SH HP SH EB Baseline 80 80 60 60 40 40 Space b 20 Import power [kWh/h] - 05 - 05 - 05 SH HP SH EB SH HP SH EE er [kWh/h] 1.0 [4] [NOK/kWh] 60 Import 0.2 Spot Spot 20 0 -0.0 09 12 13 14 09 10 11 12 13 14 08 10 11 08 Feb Feb 2021 2021 TimeStamp TimeStamp

Different ways of activating Space Heating flexibility Office building

 \bigcirc

SINTEF

SINTEF Flexibility activation Apartment block – Electric Vehicle – Flat profile

EV optimization, when other loads are non-flexible

Different ways of activating flexibility Apartment block

• (some)

Proposed KPIs – OfficeEnergy Pricing grid tariff

Ē

Proposed KPIs – Office Peak Power Monthly grid tariff

Ē

SINTEF

Proposed KPIs – Apartment Energy Pricing grid tariff SINTEF

Ē

 \bigcirc

Proposed KPIs – Apartment Peak Power Monthly grid tariff

Ē

SINTEF

	Δ Energy	Δ Cost	Δ Energy Stress	Δ Peak
Space Heating Office (GSHP)	-1% / -3%	- 3% / -15%	-13% / -22%	-10% / -38%
Apartment (PO)	+1% / +8%	+7% / -15%	+4% / -35%	+14% / -31%
Domestic Hot Water	0%	0% / -3%	0% / -6%	0% / -6%
Electric Vehicle	<mark>+4%</mark> / 0%	<mark>+3% /</mark> -14%	+6% / -4%	-4% / -34%
All together	+2% / +1%	0% / -22%	-2% / -37%	+12 / -48%

Flexibility KPIs Conclusions

- Space Heating and Electric Vehicles* have large and similar potential
 Omestic Hot Water has a much smaller potential
- Activating the flexibility can bring reductions in Δ Cost, Δ Energy Stress, Δ Peak
 O Even if there is an increase in Δ Energy
- Cost minimization with PPM (*effektledd tariff*) seems to harvest the best results in all KPIs
 While EP (*energiledd*) may even increase Δ Peak, though shifting it to cheap hours
- Flat profile as a goal harvest good results too, especially on Δ Peak, while also reducing "deep valleys"

 Could it be a better target for the energy system? (dispatchable demand for a smooth operation)
 Could it be easier to implement in buildings since it does not require external signals?**

• Introduction: Need for flexibility KPIs in Flexbuild and ZEN

• Part 1: Flexibility KPIs *per se*

- o Flexibility definition
- o Flexibility sources, drivers, goals and proposed KPIs
- o Examples of results: two case studies
- Q/A
- Breakout group work 1
- Part 2: Flexibility KPIs *links*
 - o Further examples of results
 - o End-user and energy system perspectives
 - o GHG emissions/Economy KPIs
 - o Q/A
 - Breakout group work 2

• Introduction: Need for flexibility KPIs in Flexbuild and ZEN

• Part 1: Flexibility KPIs *per se*

- o Flexibility definition
- o Flexibility sources, drivers, goals and proposed KPIs
- o Examples of results: two case studies
- o Q/A
- Breakout group work 1
- Part 2: Flexibility KPIs *links*
 - o Further examples of results
 - o End-user and energy system perspectives
 - o GHG emissions/Economy KPIs
 - o Q/A
 - Breakout group work 2

You will be assigned randomly into the breakout groups Please agree immediately who takes notes in each group! **Expected notes: keep it short and simple, thanks** ③

- Q1: We focus on flexibility as "dispatchable demand", which means optimal scheduling of a building's operation (planned one day or few hours ahead). Do you think this is a proper focus? And/or what are we missing that buildings could deliver?
- Q2: Do you think we have considered the most relevant *drivers and goals for different stakeholders* (building owner, grid/energy company)? And/or what are we evt. missing?
- Q3: Do you think the *proposed KPIs* are useful to capture the most important effects of energy flexibility and *to compare different flexibility options*? And/or what are we evt. missing?
- ...any other feedback is welcome!

PART 2

Flexibility KPIs *links*

- Introduction: Need for flexibility KPIs in Flexbuild and ZEN
- Part 1: Flexibility KPIs per se
 - o Flexibility definition
 - o Flexibility sources, drivers, goals and proposed KPIs
 - o Examples of results: two case studies
 - o Q/A
 - Breakout group work 1
- Part 2: Flexibility KPIs *links* with

$\,\circ\,$ Further examples of results

- o End-user and energy system perspectives
- o GHG emissions and Economy KPIs
- o Q/A
- Breakout group work 2

- Compare Flexibility vs. Efficiency
- Compare Flexibility + Efficiency
- Compare Optimal vs. (realistic) MPC control

Efficient Office (ca. TEK10) with Electric Boiler

Ę

Efficient Office (ca. TEK10) with GSHP + Electric Boiler

SINTEF Proposed KPIs – Office Flexibility vs. Efficiency

Ē

Proposed KPIs – OfficeFlexibility + Efficiency

Ē

Regular Apartment block in the stock

Renovated to an efficient level (ca. TEK10)

Proposed KPIs – ApartmentFlexibility vs. Efficiency

Ē

Apartment block - Panel Ovens Space Heating - Flexibility vs. Efficiency

Proposed KPIs – Apartment Flexibility + Efficiency

Ē

Proposed KPIs – Office Optimal vs. MPC control

Ē

SINTEF

- Compare Flexibility vs. Efficiency
 - Flexibility could deliver cheaper and faster benefits than Efficiency, when we are not interested in saving energy per se, but in other KPIs such as Cost and Peak load
- Compare Flexibility + Efficiency
 - Nevertheless, Flexibility works equally well on-top of Efficiency, when both are feasible/desirable
- Compare Optimal vs. (realistic) MPC control
 - Real-life control applications will perform worse than the optimal cases shown here. But there is reason to hope

- Introduction: Need for flexibility KPIs in Flexbuild and ZEN
- Part 1: Flexibility KPIs per se
 - o Flexibility definition
 - o Flexibility sources, drivers, goals and proposed KPIs
 - o Examples of results: two case studies
 - o Q/A
 - Breakout group work 1

• Part 2: Flexibility KPIs *links*

- o Further examples of results
- End-user and energy system perspectives
- o GHG emissions/Economy KPIs
- o Q/A
- Breakout group work 2

- The KPIs are valid for single buildings/neighborhoods, assuming that the energy prices are given
- But if a large share of the building stock begins to activate its flexibility – especially via aggregators – this will in turn affect how energy prices are determined (e.g. in the day-ahead spot market)
- To know the potential benefits for the entire energy system (/Norway) one needs an iterative simulation between demand side and supply side
 - > Which is exactly what the Flexbuild project does

- Introduction: Need for flexibility KPIs in Flexbuild and ZEN
- Part 1: Flexibility KPIs per se
 - o Flexibility definition
 - o Flexibility sources, drivers, goals and proposed KPIs
 - o Examples of results: two case studies
 - o Q/A
 - Breakout group work 1

• Part 2: Flexibility KPIs *links*

- o Further examples of results
- o End-user and energy system perspectives
- GHG emissions/Economy KPIs
- o Q/A
- Breakout group work 2

- Activating the Flexibility (and measuring its effects with the proposed KPIs) provide quantitative information on the categories:
 - Energy, Power, Economy
- Just like it happens with energy efficiency measures or the choice of different materials

- But energy efficiency measures and choice of different materials also give quantitative information on GHG emissions reduction
- The same does not happen for Flexibility
 This is a missing link in the ZEN definition (and a major methodological challenge)
- We know that flexible demand is a "key enabling technology" for a decarbonised energy system, but we do not know how to measure its effect
 - ➤ ...at least in Norway

SINTEF

Why it is not a good idea to simply use hourly CO2 factors in Norway

Why it is not a good idea to simply use hourly CO2 factors in Norway

SINTEF

energies

Evaluation Method for the Hourly Average CO_{2eq.} Intensity of the Electricity Mix and Its Application to the Demand Response of Residential Heating

MDPI

John Clauß ^{1,4}¹,9, Sebastian Stinner ¹, Christian Solli ², Karen Byskov Lindberg ^{3,4}, Henrik Madsen ^{5,6} and Laurent Georges ^{1,6}¹

https://www.mdpi.com/1996-1073/12/7/1345#

Why it is not a good idea to simply use hourly CO2 factors in Norway

- Hydropower is dispatchable renewable energy supply
- Does dispatchable (flexible) energy demand have to be a 'competitor'?
- Or can we find ways to make the best use of both, in **a win-win situation**?

- It should be possible though not easy to run a "Flexbuild-like" simulation of the energy system with two scenarios for the energy demand from the building stock:
 - Baseline vs. Flexible
- Then we can know the difference in total CO2 emissions from the energy system in Norway (and/or EU) in the two scenarios
 - this can then be converted in CO2 savings / m2 of floor area and become the "missing link" between flexible operation and emission reduction in the ZEN definition

- Introduction: Need for flexibility KPIs in Flexbuild and ZEN
- Part 1: Flexibility KPIs per se
 - o Flexibility definition
 - o Flexibility sources, drivers, goals and proposed KPIs
 - o Examples of results: two case studies
 - o Q/A
 - Breakout group work 1

• Part 2: Flexibility KPIs *links*

- o Further examples of results
- o End-user and energy system perspectives
- o GHG emissions/Economy KPIs
- **Q/A**
- Breakout group work 2

- Introduction: Need for flexibility KPIs in Flexbuild and ZEN
- Part 1: Flexibility KPIs per se
 - o Flexibility definition
 - o Flexibility sources, drivers, goals and proposed KPIs
 - o Examples of results: two case studies
 - o Q/A
 - Breakout group work 1

• Part 2: Flexibility KPIs *links*

- o Further examples of results
- o End-user and energy system perspectives
- o GHG emissions/Economy KPIs
- o Q/A
- Breakout group work 2

You will be assigned randomly into the breakout groups Please agree immediately who takes notes in each group! **Expected notes: keep it short and simple, thanks** ③

- Q4: Do you think the proposed KPIs are useful to compare the effects of Flexibility with those of other energy efficiency measures? And useful to establish Flexibility performance benchmarks?
- Q5: What do you think of the proposed method to *link Flexibility KPIs to the CO2 savings* it enables in the enrgy system? Or what else could be done?
- ...any other feedback is welcome!

Technology for a better society