LVDT-METHOD RELIABILITY SHALLOW AND DEEP CASES

Helsinki, Salmisaari 10 M, 12 m, 18 m Helsinki, Railway Line 15 m Helsinki Waste Water Plant 17 m Kuopio, Sport Hall 30 m

> STOCKHOLM METRO 35 M STOCKHOLM WASTE WATER PLANT 45 M

> > Tosbotn, Hydro Power tunnel 200 m

Rönnskär Storage 295m

> ONKALO & Äspö HRL FROM 160 TO 440 M

Kylylahti Mine 400 m and 650 m

TARA MINE 830 M

Kemi Mine 400 m, 860 m, 900 m and 950 m

> Malmberget Mine 1054 m

> > Kiruna Mine 1175 m

GARPENBERG MINE 1314 m

> Pyhäsalmi Mine 1430 m

STRESS MEASUREMENT COMPANY OY MATTI.HAKALA@SMCOY.FI

and the state of the

LVDT-CELL METHOD

LVDT-CELL METHOD

- FROM EXISTING EXCAVATION OR SHAFT
- Focused on known quality and reliability

THE CELL

- ROBUST 2D-CELL, WHICH MEASURES FOUR DIAMETRIC DEFORMATIONS WITH EIGHT LVDT-SENSORS
- MECHANICALLY MOUNTED WITH EXPANDABLE O-RINGS
- PILOT HOLE DIAMETER 126 MM
- OVERCORING OR SIDECORING
 DIAMETER 200 MM
- <u>2021: New Wireless Version in</u> <u>PROTOTYPE TESTING</u>

- HORIZONTAL IN SITU STRESS MAGNITUDES AND ORIENTATION WITH ONE OR TWO CROWN MEASUREMENTS
- TWO INCREASES RELIABILITY

FOUR TO FIVE MEASUREMENTS AROUND EXCAVATION PROFILE GIVES FULL 3D STRESS TENSOR

IN HIGH STRESS

- OVERCORING DOESN'T WORK WHEN DISKING TAKES PLACE
- APPLIED INVERSE SOLUTION ENABLES USE OF <u>SIDECORING</u>
 PARTIAL STRESS RELIEF
- SIDECORING WORKS, AS FAR AS PILOT HOLE REMAIN STABLE

COMPACT DRILL RIG

- NORMALY WITH TWO DRILLING
 & MEASUREMENT UNITS
- Possible from limited spaces like shaft
- SPECIAL RIG DESING FOR
 SIDECORING

CASE 1 - SHALLOW MEASUREMENT

Note: photo from Helsinki

SHALLOW DEPTH CASE

- 3D IN SITU STRESS INTERPRETATIONS AT THREE LOCATIONS ABOUT 30 M DEPTH
- MAXIMUM DISTANCES BETWEEN THE MEASUREMENT LOCATIONS WAS LESS THAN ONE HUNDRET METERS
- DOMIANT ROCK TYPE IS GNEISS WITH GRANITIC VEINS
- ROCK IS MODERATELY JOINTED
- DEPTH OF EXVATION BLAST DAMAGE WAS LESS THAN 20 CM

Location D

CASE 1 - SHALLOW

FIVE OVERCORING MEASUREMENTS AT EACH LOCATION

LOCATION A

PH-A2 LVDT: 134 cm LOCATION B PH-A3 OC: 120-170 cm LVDT: 50 cm OC: 40-90 cm 🕈 РН-А4 LVDT: 103 cm OC: 95-145 cm ◄ PH-B3 LVDT: 117 cm PH-B2 LOCATION D v PH-B4 OC: 107-147 cm LVDT: 110.5 cm LVDT: 126 cm OC: 100-145 cm OC: 116-164 cm PH-D3 PH-A5 LVDT: 76.5 cm LVDT: 93 cm OC: 65.5-110 cm OC: 80-125 cm PH-D2 PH-A1 PH-D4 LVDT: 63 cm PH-D1 LVDT: 62 cm Need to be reshaped LVDT: 95 cm OC: 45-95 cm OC: 45-100 cm can affect to A1 LVDT: 100 cm OC: 85-125 cm OC: 92-135 cm A Z . PH-B5 LVDT: 85 cm PH-B1 OC: 75-125 cm LVDT: 60 cm OC: 46.5-95.0 cm PH-D5 LVDT: 125 cm OC: 115-160 cm Z Z Pilot hole, PH OC before probe installation

CASE 1 - SHALLOW

OVERCORING RESPONCE: TYPICAL AND THE WORST ONE

Time	Observation
9:48	cell stable, overcoring started, advance 95 cm = 0
9:51-10:13	8 * coring advance recording
10:16	OC finished, advance 140 cm
10:37	logging paused for data saving
10:50	logging restarted, 'warming' of electronics during next 15 min
16:30	logging stopped

PH-A5

Time	Observation
9:48	cell stable, overcoring started, advance 80 cm = 0
9:50-10:10	8 * coring advance recording
9:50 +	High rate drifting initiated in all convergences, drifting rate
	decreases with advancing coring, most probable due to high
	temperature increase
10:13	OC finished, advance 125 cm
10:32	logging paused for data saving
10:44	logging restarted 'warming' of electronics during next 15 min
9:16 +1d	logging stopped on next morning

TESTING FOR ELASTIC PROPERTIES

- UNIAXIAL COMPRESSION OF 120 MM PILOT CORES
- GENERALLY, AS HERE, HETEROGENEOUS APPROACH IS PREFERRED

CASE 1 - SHALLOW

RESULTS – BEST FIT AND OTHER SOLUTIONS FOR PRINCIPAL STRESSES

217

6.8

σh

235

σh **14.9**

8.0

σh

212

RESULTS – BEST FIT AND OTHER SOLUTIONS FOR PRINCIPAL STRESSES

ErrMin:best fit solution minimizing error between measured and simulated convergencesR2max:best fir solution maximizing the coefficient of determinationH/V:best fir solution for horizontal stress components only

CASE 1 - SHALLOW

ERROR STUDY

- RELIABILITY OF RESULTING STRESS STATE BASED ON 60-100 REALIZATIONS WITH INTERNAL ERROR LESS THAN OR EQUAL COMPARED TO BEST FIT SOLUTION
- Magnitude (MPa)
 - [-5,0]
 (0,5]
 (5,10]
 (10,15]
 (15,20]

Principal stress

○ S1
 □ S2
 △ S3

RESULT- RECOMMENDATION FOR FUTURE USE

- HORIZONTAL/VERTICAL ALIGNED IN SITU STRESS STATE
- VERTICA STRESS EQUAL TO WEIGHT OF OVERBURDEN
- 95% CONFIDENCE LIMITS FOR HORIZONTAL STRESS MAGNITUDES AND ORIENTATIONS

σ1 =	σ _H =	13.9 MPa ±2.8 MPa,	trend 145° ± 7°, clockwise from local y-axis
σ2 =	σ_h =	0.5 σ_{H} , 0.43 σ_{H} to 0.56 $\sigma_{\text{H}_{\text{r}}}$	trend = trend(σ_1)-90° and
σ3 =	σ _v =	mgz = 0.9 MPa	= 0.027 MPa/m * 35 m

CASE 2 – DEEP MEASUREMENT

a

F

MEASUREMENTS FOR HORIZONTAL IN SITU STRESSES AT THREE LOACTIONS IN LKAB KIRUNA MINE AT 1375 LEVEL

ML1: Densely fractured*very hard to find installation location*

HL3: thin sprayed concrete, easy to find installation locations

CASE 2 - DEEP

ML2: four *doble sidecoring* measurements, at two depths ML3: two *doble sidecoring* measurements

ELASTIC PARAMETERS

Uniaxial compression test of the specimen PH2-2_SC1

Elastic parameters defined unloading from 100 MPa measured by Strain gauge rosette 2 Measured stress - strain response Failure Pattern 100

CASE 2 - DEEP

ML2B - measurement depth: 132-145 cm

<u>ML1</u>

CASE 2 – DEEP

ML3 - measurement depth: 88-93 cm

ML2B - measurement depth: 132-145 cm

ML1

CASE 2 - DEEP

RANKING OF DATA AND SOLUTIONS

ML2A - measurement depth: 85-87 cm

	Value	95% C.L.	Reliabilitity
Field data			good
Elastic parameters			good
Stress solution			
σ _H [MPa]	48.3	±5.8	good
σ _h [MPa]	37.1	±5.9	good/moderate
Trend of σ_{H} [\degree]	85	±13	good
CoD	0.97		
Overall			good

ML2B - measurement depth: 132-145 cm

	Value	95% C.L.	Reliabilitity
Field data			good
Elastic parameters			good
Stress solution			
σ _H [MPa]	49.9	±6.4	good
σ _h [MPa]	40.4	±7.6	moderate
Trend of σ_{H} [\degree]	91	±33	poor
CoD	0.92		
Overall			moderate - poor

ML3 - measurement depth: 88-93 cm

	Value	95% C.L.	Reliabilitity
Field data			good
Elastic parameters			good
Stress solution			
σ _H [MPa]	54	±5.3	good
σ _h [MPa]	34.6	±3.7	good
Trend of σ_{H} [\degree]	83	±8	good
CoD	0.99		
Overall			good

<u>ML1</u>

	Value	95% C.L.	Reliabilitity
Field data			good/moderate
Elastic parameters			good
Stress solution			
σ _H [MPa]	27.6	±6.4	moderate
σ _h [MPa]	25.3	±4.2	moderate
Trend of σ_{H} [\degree]	56	±61	-
CoD	0.96		
Overall			moderate

MAJOR PRINCIAL STRESS ORIENTATION IN SCANDINAVIA BASED ON LVDT-MEASUREMENTS

SOMETHING NEW

New 2D DOWNHOLE PROBE – DDP36

- 36 MM PILOT HOLE
- MECHANICALLY MOUNTED
- FOUR CONVERGENCES WITH EIGHT SENSORS
- ROCK TEMPERATURE
- GYRO
- LAB TESTED IN ALUMINUM AND GRANITE BLOCK TO RESULT BETTER THAN 10% ACCURACY
- FIRST FIELD TEST SUCCESSFULL DATA ANALYSES IN PROCESS

THANK YOU FOR YOUR ATTENTION

STRESS MEASUREMENT COMPANY OY MATTI.HAKALA@SMCOY.FI