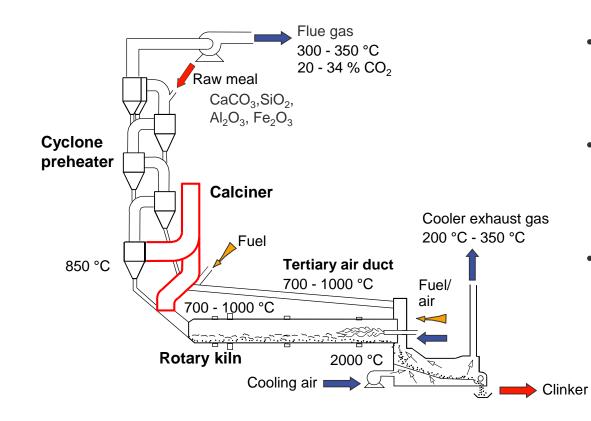


University of Stuttgart

Institute of Combustion and Power Plant Technology Prof. Dr. techn. G. Scheffknecht

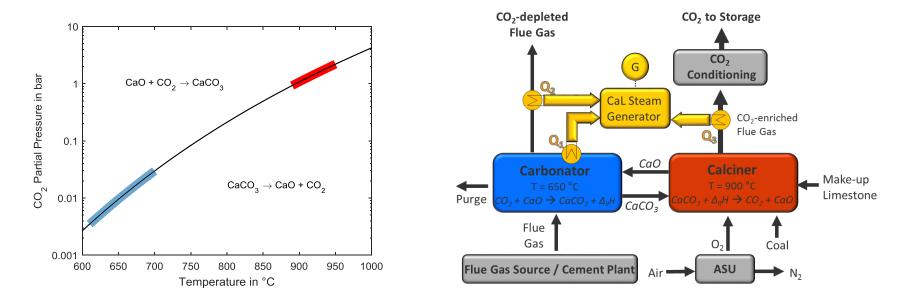


CCS in cement industry – Application of the Calcium Looping Technology

Matthias Hornberger, Reinhold Spörl, Günter Scheffknecht

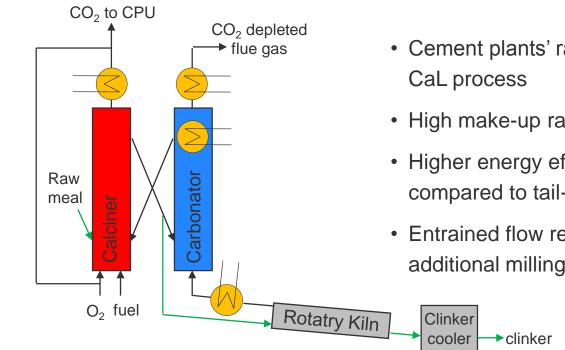
TCCS9, 12th to 14th September 2017, Trondheim

Clinker manufacturing



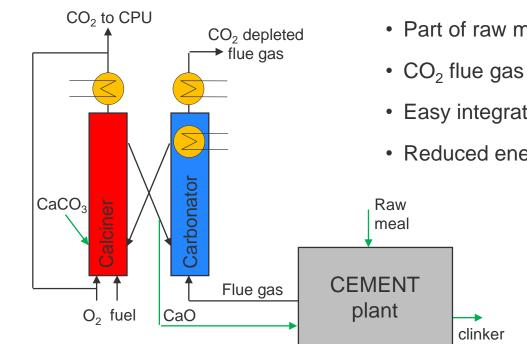
- Cement production constitute
 ~5 % of global anthropogenic
 CO₂ emissions
- CO₂ emissions:
 - 60 % by raw materials
 - 40 % by fuel
- Reduction of CO₂ emissions:
 - 56 % CCS
 - 44 % by increase of energy efficiency, alternative fuels, reduction of clinker share

Calcium – Looping


Calcium Looping – General Process Description

- CO₂ capture by cyclic calcination and carbonation of Calciumcarbonat (CaCO₃)
- High energy efficiency due to high temperature level

Calcium Looping – Cement Plant Integration


Integrated CaL

- Cement plants' raw meal completely calcined by
- High make-up ratio realizable
- Higher energy efficiency and higher complexity compared to tail-end
- Entrained flow reactors or CFB reactors with additional milling step if necessary

Calcium Looping – Cement Plant Integration

Tail-end CaL

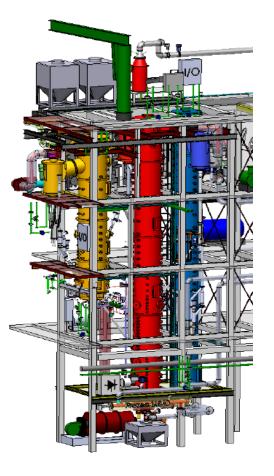
- Part of raw meal calcined in CaL process
- CO₂ flue gas concentration ~ 20 35 %
- Easy integration
- Reduced energy efficiency

Experimental results – Experimental facility

200 – 230 kW_{th} pilot scale facility (3 reactors)

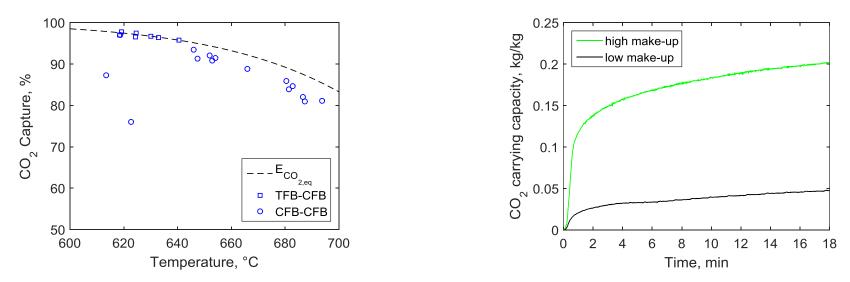
Bubbling bed reactor (1x)

- diameter: 330 mm
- height: 6 m


Circulating fluidized bed reactor (2x)

- diameter: 200 mm
- height: 10 m

Possible reactor configuration: CFB-CFB, BFB-CFB


No electrical heating (heated by combustion)

Gas analysis (H₂, CO, CH₄, O₂, CO₂, C_xH_y, SO₂, NO_x)

Experimental results – CO₂ capture

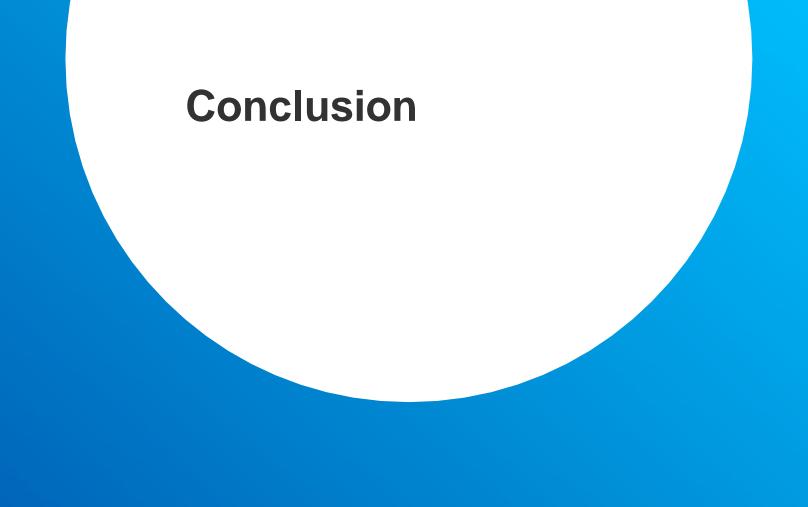
- CO₂ capture was limited by the equilibrium CO₂ capture
- High CO₂ capture rate above 90 % reached
- High sorbent activity due to high make-up flows

University of Stuttgart - Institute of Combustion and Power Plant Technology - M. Sc. Matthias Hornberger

Simulation results*

*Spinelli et al. Integration of Ca-Looping systems for CO₂ capture in cement plants, Energy Proceedia (GHGT-13)

	Reference cement plant w/o CO ₂ capture	tail-end CaL configuration	integrated CaL configuration
Integration level [%]		20	100
F ₀ /F _{CO2}		0.16	4.1
F _{Ca} /F _{CO2}		4.8	4.0
Carbonator CO ₂ capture efficiency [%]		88.8	80.0
Total fuel consumption [MJ _{LHV} /t _{clk}]	3223	8672	4740
Rotary kiin burner fuei consumption [MJ _{LHV} /t _{clk}]	1224	1210	1180
Pre-calciner fuel consumption [MJ _{LHV} /t _{clk}]	1999	1542	- 3560
CaL calciner fuel consumption [MJ _{LHV} /t _{clk}]		5920	
Electric balance [kWh _{el} / t _{clk}]			
Gross electricity production		579	163
ASU consumption		-117	-73
CO ₂ compression		-146	-111
Carbonator and calciner fans		-25	-11
Comont plant auxiliarios	-132	-132	-132
Net electric production	-132	159	-164


University of Stuttgart Institute of Combustion and Power Plant Technology M. So. Matthias Hernberger

Simulation results*

*Spinelli et al. Integration of Ca-Looping systems for CO₂ capture in cement plants, Energy Proceedia (GHGT-13)

	Reference cement plant w/o CO ₂ capture	tail-end CaL configuration	integrated CaL configuration
Direct CO ₂ emissions [kg _{CO2} /t _{clk}]	863.1	143.2	71.4
Indirect CO ₂ emissions [kg _{CO2} /t _{clk}]	105.2	-123.5	128.7
Equivalent CO ₂ emissions [kg _{CO2} /t _{clk}]	968.3	19.7	200.1
Equivalent CO ₂ avoided [%]		98.0	79.3
SPECCA [MJ _{LHV} /kg _{CO2}]		3.26	2.32

$$SPECCA = \frac{q_{equivalent} - q_{equivalent,ref}}{e_{CO2,equivalent,ref} - e_{CO2,equivalent}}$$

Conclusion and Outlook

CaL CO₂ capture:

- Beneficial Calcium Looping operation conditions due to reutilization of sorbent in cement plant
- High CO₂ capture rate >90 % CO₂ capture achieved over a wide range of parameters

Tail-end CaL configuration:

- easy to integrated
- CFB reactors → minor technical uncertainties
- Significant increase of fuel input (+270 %)
- Electric power export and very low equivalent emissions

Integrated CaL configuration:

- Complex integration
- Moderate increase of fuel input (+47 %)
- Electric consumption similar to reference cement plant
- Research upon raw meal sorbent performance and entrained flow carbonator sizing

Thank you for your attention!

Acknowledgement

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 641185

www.sintef.no/cemcap

Twitter: @CEMCAP_CO2

Disclaimer: The European Commission support for the production of this publication does not constitute endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein

Thank you!

Matthias Hornberger

e-mail Matthias.Hornberger@ifk.uni-stuttgart.de phone +49 711 685-67801 fax +49 711 685-63491

University of Stuttgart Institute of Combustion and Power Plant Technology Pfaffenwaldring 23 • 70569 Stuttgart • Germany

