

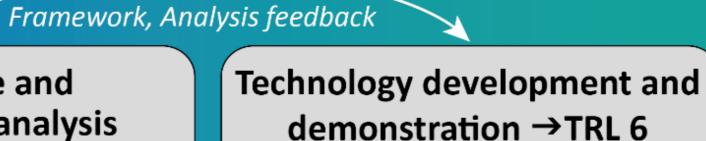
CEMCAP is a Horizon 2020 project that will prepare the grounds for cost- and resourceeffective CCS in European cement industry.

CEMCAP is positioned toUtilize competence and

CEMCAP Making CO₂ capture retrofittable to cement plants

- CO₂ emissions from the cement production process constitute ~5 % of global anthropogenic CO₂ emissions.
- CO₂ generation is an inherent part of the cement production process where CaCO₃ is converted to CaO and CO₂
- The only viable option to significantly reduce GHG emissions from the cement industry is (CCS)
- Cement plant lifetime is 30-50 years or more. CEMCAP therefore investigates technologies for CO₂ capture retrofit

Strategic techno-economic decision basis for


- knowledge from ongoing and concluded CCS projects for power industry
- Complement the Norcem CCS project by testing and evaluating additional postcombustion capture technologies
- Strengthen and advance the ongoing ECRA CCS project for cement industry (component testing for oxyfuel)

Key figures:

Duration: May 2015-October 2018 Budget: 10,030 kEUR EC contribution: 8,779 kEUR Swiss government funding: 704 kEUR Industrial funding: 547 kEUR Coordinator: SINTEF Energy Research

Kristin Jordal, Mari Voldsund,

- Oxyfuel: burner, calciner and clinker cooler
- Chilled ammonia process (CAP)
- Membrane-assisted CO₂ liquefaction
- Calcium looping

Pilot scale test results

Perfomance and

retrofitability analysis

The **CEMCAP framework document** provides a common and consistent basis for analytical and experimental research in the project. The framework document will be made public by the

end of 2017.

Above: CEMCAP – iterating between experimental and analytical research. Below: CO₂ capture technologies investigated in CEMCAP – characteristics as anticipated at project startup.

		· · · ·	
	Post combustion		
Oxyfuel	Chilled ammonia	Membrane- assisted CO ₂ liquefaction	Calcium looping
Combustion in oxygen (not air) gives a CO_2 -rich exhaust. CO_2 is separated through condensation after compression and cooling.	Exhaust passes through a cold NH_3 /water mixture, which absorbs CO_2 . CO_2 is released as heat is added to the solution in a subsequent vessel.	A polymeric membrane is used to increase exhaust CO ₂ concentration. CO ₂ is separated through condensation after compression and cooling.	CaO particles react with CO_2 to from $CaCO_3$. CO_2 is released in a subsequent vessel through the addition of heat.
Retrofit possible through modification of burner and clinker cooler.	Retrofit appears simple, minor modifications required for heat integration.	No modifications of cement plant. SOx, NOx, H_2O removal required upstream of capture unit.	CaCO ₃ /CaO integration: Waste from capture process (CaO) is cement plant raw material.
Maintained quality must be confirmed.	Unchanged.	Unchanged.	Clinker quality likely to be maintained.
CO_2 purification unit (CPU) needed. High capture rate and CO_2 purity possible (trade-off against power consumption).	SOx.		Rather high CO ₂ purity (minor/moderate CO ₂ impurities present). High capture rate.
	Combustion in oxygen (not air) gives a CO ₂ -rich exhaust. CO ₂ is separated through condensation after compression and cooling. Retrofit possible through modification of burner and clinker cooler. Maintained quality must be confirmed. CO ₂ purification unit (CPU) needed. High capture rate and CO ₂ purity possible (trade-off against power	OxyfuelChilled ammoniaCombustion in oxygen (not air) gives a CO2-rich exhaust. CO2 is separated through condensation after compression and cooling.Exhaust passes through a cold NH3/water mixture, which absorbs CO2. CO2 is released as heat is added to the solution in a subsequent vessel.Retrofit possible through modification of burner and clinker cooler.Retrofit appears simple, minor modifications required for heat integration.Maintained quality must be confirmed.Unchanged.CO2 purification unit (CPU) needed. High capture rate and CO2 purity possible (trade-off against powerVery high CO2 purity, can also capture rate possible.	OxyfuelChilled ammoniaMembrane- assisted CO2 liquefactionCombustion in oxygen (not air) gives a CO2-rich exhaust. CO2 is separated through condensation after cooling.Exhaust passes through a cold NH3/water mixture, which absorbs CO2- CO2 is released as separated through compression and cooling.A polymeric membrane is used to increase exhaust CO2 concentration. CO2 is separated through heat is added to the solution in a subsequent vessel.A colymeric membrane is used to increase exhaust CO2 concentration. CO2 is separated through condensation after cooling.Retrofit possible through modification of burner and clinker cooler.Retrofit appears simple, minor modifications required for heat integration.No modifications of cement plant. SOX, NOX, H2O removal required upstream of capture unit.Maintained quality must be confirmed.Unchanged.Unchanged.CO2 purification unit (CPU) needed. High capture rate and CO2 purity possible (trade-off against powerVery high CO2 purity, High capture rate possible.High capture rate power consumption and CO2 purity and

Sigmund Størset SINTEF Energy Research Kristina Fleiger, Johannes Ruppert VDZ GmbH Reinhold Spörl, Matthias Hornberger IFK, Univeristy of Stuttgart Giovanni Cinti Italcementi

Contact: Kristin.Jordal@sintef.no

www.sintef.no/cemcap Twitter: @CEMCAP_CO2

This project has received funding from the

The CEMCAP consortium consists of

- Cement producers: Norcem, Italcementi, HeidelbergCement
- Technology providers: GE Carbon Capture, GE Power Sweden, IKN, ThyssenKrupp Industrial Solutions

European Union's Horizon 2020 research

and innovation programme under grant

agreement No 641185.

