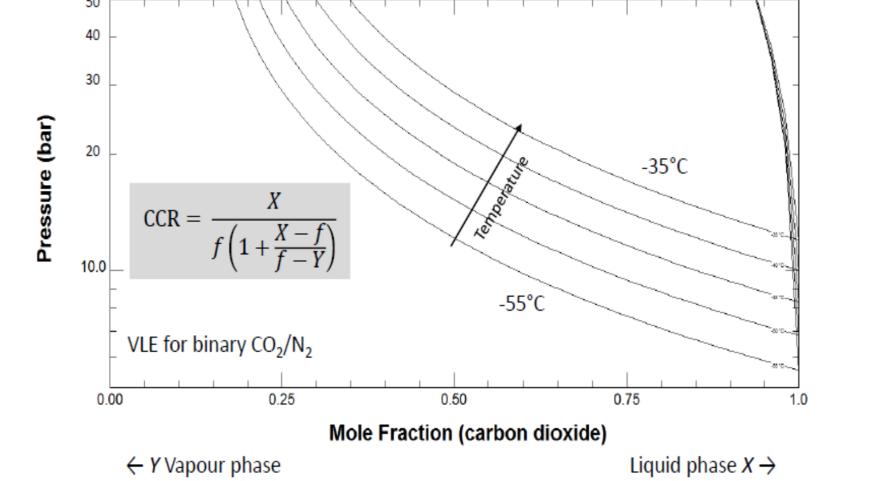


CEMCAP is a Horizon 2020 project with the objective to prepare the grounds for cost- and resource-effective CCS in European cement industry.

Four technologies are studied oxyfuel combustion, retention of CO₂ from flue gas in a chilled ammonia solution, calcium looping where CO₂ from flue gas reacts with CaO particles to form CaCO₂, and membraneassisted CO₂ liquefaction.

Membrane-assisted CO₂ liquefaction performance modeling of CO₂ capture from flue gas in cement production

Membrane-assisted CO₂ liquefaction combines two different separation technologies, each of which can carry out a partial separation within its favorable regime of operation. The flue gas from a conventional cement kiln has a CO₂ concentration typically in the range of 14–35 % and is assumed to be pre-conditioned before entering the membrane system. With a CO_2 selective membrane system, the exhaust is depleted in CO₂, and the concentration in the permeate is increased to a level sufficient for recovery and purification by liquefaction. After liquefaction the captured CO₂ is in liquid phase at high purity, and can thus be pumped to dense-phase transport pressure.



Up until recently the membrane

Richard Bouma Frank Vercauteren Peter van Os **Earl Goetheer**

Preliminary modeling results

Calculations are made with a permeate pressure of 0.2 bar, CO_2 permeance of 7.5.10⁻⁹ $m^{3}(STP)/(m^{2}sPa)$. Membrane area, CO_{2}/N_{2} separation factor of the membrane, and liquefaction pressure have been varied for targeted CO₂ recovery in the range of 60–90 %.

TNO, PO Box 6012, NL-2600 JA Delft, The Netherlands **David Berstad Rahul Anantharaman**

SINTEF Energy Research, PO Box 4761, 7465 Trondheim, Norway **Contact:** David.berstad@sintef.no

www.sintef.no/cemcap Twitter: @CEMCAP_CO2

This project is funded by the European

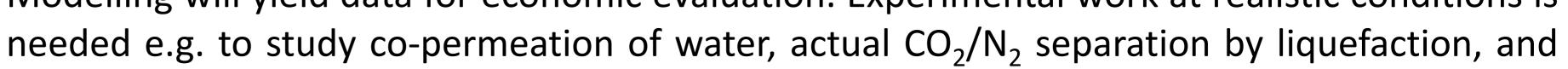
A/Qf 8000 6000 4000 2000 1,1 1,2 1,3 Feed pressure / bar

Left: CO_2/N_2 vapour-liquid equilibrium.

Right: Membrane area per unit feed flow versus feed pressure at indicated CO₂ recovery. Permeate pressure is 0.2 bar, liquefaction pressure 33.5 bar, membrane separation factor is 40, and CO₂ concentration in the feed flow is 20 %.

Conclusions

- The required membrane area is a strong function of CO₂ concentration in the cement kiln flue gas, desired CO₂ recovery, pressure ratio across the membrane, membrane separation factor and CO₂ permeance.
- Substantial recovery of CO₂ can be realized with a CO₂ concentration of \geq 20 % and a ulletrecycle of the purged waste stream from the liquefaction to the membrane unit.
- Any lowering of permeate pressure below 0.2 bar is highly beneficial. \bullet


Ongoing work is focused on:

- Integrated modelling of membrane-assisted CO₂ liquefaction in the same process simulation interface
- Experimental membrane characterisation 2.
- 3. Experimental study of liquefaction and gas/liquid separation

Modelling will yield data for economic evaluation. Experimental work at realistic conditions is

Union's Horizon 2020 Framework

Programme for research and innovation

required flue gas preconditioning.