

CO₂ capture and reuse in the cement industry "From the lab to the plant"

Integration of Ca-Looping Systems

University of Mons - 9 November 2016

prof. Stefano CONSONNI

Maurizio **Spinelli** PhD Manuele **Gatti** PhD prof. Matteo **Romano** prof. Stefano **Campanari**

- ✓ Strong production increase worldwide (>250% in the last 15 years)
- ✓ High CO_2 emissions per unit product (~850g_{CO2}/kg_{CK})
- ✓ Globally, cement industry is responsible for the 5% of the total anthropogenic CO_2 emissions from stationary sources

China PRC Rest of world 🖬 Vietnam United States SN 1800 01 1600 Turkey Thailand 🖬 Saudi Arabia Ċ **ETRI** 🖬 Russia Mexico **MILLION M** Korea ROK Japan 📓 Italy 📔 Iran Indonesia Germany 🖬 Egypt

📓 India

🖬 Brazil

Several CO₂-reduction measures are currently available:

EfficiencyE.g: Additional preheating stageincreaseefficient electric engines

AlternativeE.g: Use of biomass and otherfuelscarbon neutral fuels

Alternative cement

E.g: MgO-based clinker (*low temperature, low CO*₂ *process*) Differently from other industrial process, most of CO₂ emission comes from chemical processes and not from fuel combustion

CCS is essential for a deep reduction of both the CO₂ generated by combustion and CaCO₃ calcination

UMONS - 9-11-2016

- Calcium Looping technology (CaL) \checkmark
- CaL applications for CCS in cement plants
- Synergy process between CaL power plant & cement plant
- Tail-end CaL option in cement plants \checkmark
- Integrated CaL option in cement plants > CEMCAP \checkmark
- Entrained flow carbonator model \checkmark

Ca-Looping technology

1

The Calcium Looping concept

- \checkmark CO₂ capture by Calcium Looping comprises two basic steps
- 1) Capture diluted CO_2 by calcium oxide (CaO) to form calcium carbonate (CaCO₃): \checkmark

 $CaO_{(S)}+CO_{2(G)} \rightarrow CaCO_{3(S)} \quad \Delta h_R = -179 \text{ kJ mol}^{-1}$

At atmospheric pressure this **Carbonation** reaction takes place around 650°C with the release of a significant amount of heat, which can be used in a steam cycle

- \checkmark 2) Release highly-concentrated CO₂ by **oxy-fuel Calcination** at about 950°C. Liquid CO₂ for storage is obtained by purifying the flow generated in the calciner.
- The same CaO keeps looping across the Carbonator and the Calciner, with a fraction being purged to maintain adequate reactivity

Calcium looping with CFB reactors – key parameters

- F_0/F_{co2} (Limestone make-up) = mol ratio {fresh CaCO₃ flow to carbonator} / {CO₂ in the exhaust gases entering the carbonator}; make-up is needed to <u>keep high</u> sorbent reactivity and <u>extract sulphur and other impurities</u>; high make-up gives <u>higher CO₂ capture</u> rates but also higher <u>energy consumption</u>
- F_R/F_{co2} (Sorbent recycle rate) = mol ratio {CaO recirculated across reactors} / {CO₂ in the exhaust gases entering the carbonator}; this ratio gives the excess of sorbent with respect to stoichiometric conditions
- W_s/V_g (solid inventory) = ratio {solids in carbonator / { vol flow rate of gas};

High F_R/F_{CO2} and low F_0/F_{CO2} maximize CO_2 capture while minimizing waste sorbent

Stefano Consonni

UMONS - 9-11-2016

Ca-Looping in cement plants

Ca-Looping application for power production and CCS in cement plants

- ✓ Complete process simulations (GS-Aspen) & models for Carbonator and MCFC (Matlab and Fortran) → techno-economic analysis
- ✓ All the proposed processes are compared with the reference CCS option (oxycombustion)

Synergy process between a cement plant and a CaL power plant

Synergy process concept: cement plant fed by power plant purge

Process integration: solid purge from power plant fed to cement plant as <u>calcined</u> <u>raw meal</u> \rightarrow strong reduction in fuel consumption, CO₂ emission and costs

Cement plant off design operation: substitution rate

Effects of feeding CaO-rich CaL purge:

- Reduction of fuel consumption for limestone calcination
- Reduction of CO₂ emission from fuel oxidation and calcination
- Reduction of gas and solid flow rate in the suspension preheater

Integration level defined by the substitution rate (SR):

 $SR = \frac{moles \ of \ CaO \ from \ CaL \ purge}{total \ moles \ of \ Ca \ fed \ to \ the \ plant}$

Effect of different SR: fuel consumption and CO₂ emissions

Cement plant off design operation: substitution rate

Effects of feeding CaO-rich CaL purge:

- Reduction of fuel consumption for limestone calcination
- Reduction of CO₂ emission from fuel oxidation and calcination
- Reduction of gas and solid flow rate in the suspension preheater

<u>Maximum substitution rate limited</u> by the presence of solids species other than $CaO/CaCO_3$, i.e. fuel ash and $CaSO_4$ in the CaL purge

- ➔ Important influence of composition of fuel used in the calciner of the CaL process
- → SRmax determined by comparing the CaL purge composition with ISOsubstitution rate maps
- → Cases with lower F_R/F_{CO2} lead to higher purity purge and may be preferred

Synergy process – Results (i): power plant size & CO_2 avoided

Simulation criteria: Fixed size for the cement plant (4100 tpd) Variable size for the power plant, determined by the maximum substitution rate

$(F_{0}/F_{co2} \text{ variable}, F_{R}/F_{co2}=6, W_{s}/G_{c}=150 \text{ kg/(m^{3}/s)})$

13/37

Tail-end CaL application in cement plant

Tail-end CaL application in cement plant

Downstream Calcium looping CO_2 capture section based on two interconnected fluidized bed reactors (carbonator-calciner) fed by a pure CaCO₃ stream.

Sensitivity analysis on:

- → Integration level (IL): fraction of raw meal substituted with the CaL purge→ depends on F_0 (moles of fresh CaCO₃ introduced in the CaL system)
- \rightarrow F_{Ca,Act} amount of active sorbent circulating between carbonator and calciner.

Simulation tools: → Matlab for carbonator model

→ GS for the integrated CaL/cement production process

POLITECNICO

MILANO 1863

Tail end CaL: results (i) – CO₂ capture efficiency

Ideal/real CO₂ capture efficiency as a function of $F_{ca,act}/F_{CO2}$ and IL:

- <u>Ideal</u> \rightarrow assuming that CaO particles achieve their maximum average conversion;
- <u>Real</u> \rightarrow calculated by carbonator model, which takes into account the operating conditions (geometry, inventory) and the effects of sulfur species and coal ash (Carbonator: h=40 m, v_s=5 m/s, W_s=1000 kg/m²).

- Low $F_{Ca,act}$: CO₂ capture limited by conversion; High $F_{Ca,act}$: limited by equilibrium.

- The higher IL, the higher the sorbent reactivity and the CO₂ capture rate

POLITECNICO

MILANO 1863

Tail end CaL: results (ii) – selected case (IL=20%, F_{C02} =5)

	Reference cement plant without CO ₂ capture	Tail-end CaL configuration with CFB reactors
Integration level [%]		20
F ₀ /F _{CO2}		0.16
F _{Ca,act} /F _{CO2}		4.8
Carbonator CO ₂ capture efficiency [%]		88.8
Total fuel consumption [MJ _{LHV} /t _{clk}]	3223	8672
Rotary kiln burner fuel consumption [MJ _{LHV} /t _{clk}]	1224	1210
Pre-calciner fuel consumption [MJ _{LHV} /t _{clk}]	1999	1542
CaL calciner fuel consumption [MJ _{LHV} /t _{clk}]		5920
Electric balance [kWh _{el} / t _{clk}]		
Gross electricity production		579
ASU consumption		-117
CO ₂ compression		-146
Carbonator and calciner fans		-25
Cement plant auxiliaries	-132	-132
Net electric production	-132	159
Direct CO ₂ emissions [kg _{cO2} /t _{clk}]	863.1	143.2
Indirect CO ₂ emissions [kg _{cO2} /t _{clk}]	105.2	-123.5
Equivalent CO ₂ emissions [kg _{co2} /t _{clk}]	968.3	19.7
Equivalent CO ₂ avoided [%]		98.0
SPECCA [MJ _{LHV} /kg _{CO2}]		3.26

Integrated CaL application in cement plant

Lafarge process consists in the conversion of calciner to oxyfuel operation, obtaining rich-CO₂ exhausts which can be cooled and stored.

Partial oxyfuel (Lafarge) and direct CaL (PoliMI) concepts

Extension of the Lafarge concept: oxyfuel calciner is required also in this case Only flue gases from kiln and III air (from clinker cooler) are fed to the preheater, without flowing through the calciner.

A portion of the calcined raw meal is injected in the suspension preheater (entrained flow carbonator), where CaO can act as sorbent of the CO_2 in the kiln flue gas

Integrated CaL application in cement plant

Sensitivity analysis on:

→ $F_{Ca,Act}$ amount of active sorbent circulating between carbonator and calciner → the sorbent conversion and the solid loading are tuned for reaching 80% of CO₂ capture ratio

Integrated CaL results(i): solid loading & conversion

Sensitivity analysis on:

→ F_{Ca,Act} amount of active sorbent circulating between carbonator and calciner → the sorbent conversion and the solid loading are tuned for reaching 80% of CO₂ capture ratio

Integrated CaL: results (ii) – selected case (X_{CaO} =20%)

	Reference cement plant without CO ₂ capture	Tail-end CaL configuration with CFB reactors	integrated CaL configuration with EF reactors
Integration level [%]		20	100
F_0/F_{CO2}		0.16	4.1
F _{Ca.act} /F _{CO2}		4.8	4.0
Carbonator CO ₂ capture efficiency [%]		88.8	80.0
Total fuel consumption [MJ _{LHV} /t _{clk}]	3223	8672	4740
Rotary kiln burner fuel consumption [MJ _{LHV} /t _{clk}]	1224	1210	1180
Pre-calciner fuel consumption [MJ _{LHV} /t _{clk}]	1999	1542	3560
CaL calciner fuel consumption [MJ _{LHV} /t _{clk}]		5920	
Electric balance [kWh _{el} / t _{clk}]			
Gross electricity production		579	163
ASU consumption		-117	-73
CO ₂ compression		-146	-111
Carbonator and calciner fans		-25	-11
Cement plant auxiliaries	-132	-132	-132
Net electric production	-132	159	-164
Direct CO ₂ emissions [kg _{cO2} /t _{clk}]	863.1	143.2	71.4
Indirect CO ₂ emissions [kg _{CO2} /t _{clk}]	105.2	-123.5	128.7
Equivalent CO ₂ emissions [kg _{cO2} /t _{clk}]	968.3	19.7	200.1
Equivalent CO ₂ avoided [%]		98.0	79.3
SPECCA [MJ _{LHV} /kg _{CO2}]		3.26	2.32

Entrained flow carbonator model

1

Entrained flow CaL carbonator modeling

Dilute reactor is the most suitable option for the cement plant CaL application, because of the **experience** with entrained flow technologies and the **low particle size**. A simple, finite-difference model (axial discretization) has been developed to solve mass, momentum and energy equations and evaluate the potential CO₂ capture rate.

EF Carbonator model – Temperature profiles

Temperature profiles along reactor axis: influence of operating conditions

UMONS - 9-11-2016

EF Carbonator model – pressure profile

Pressure profile along reactor axis \rightarrow (4 different trends) $\Delta p_1 \rightarrow$ solid acceleration; $\Delta p_2 \rightarrow$ solid hold-up and wall friction; $\Delta p_3 \rightarrow$ concentrated pressure loss (curvature); $\Delta p_4 \rightarrow$ pressure increase in descending section.

27/37

EF Carbonator model – CO₂ capture efficiency

Spinelli M.: «Advanced technologies for CO₂ capture and power generation in cement plants",

Solid

80

100

UMONS - 9-11-2016

Ongoing activities and further research needs

Ongoing activities:

- Improvement on the entrained-flow carbonator model by better fluid-dynamic and heat transfer correlations from literature
- Improvement of the kinetic model based on sorbent performance from lab tests
- Assess the configuration and performance of the heat recovery steam cycle
- Perform preliminary economic analysis of the process

Further research needs:

- Validate the entrained-flow carbonator performance at pilot scale, connected with an oxyfuel calciner.
- Validate the chemical, fluid-dynamic and thermal model based on pilot tests
- Improve process models and economic analysis based on knowledge from pilot tests.

UMONS - 9-11-2016

POLITECNICO

http://www.leap.polimi.it/leap/

http://www.gecos.polimi.it/

POLITECNICO MILANO 1863

Activities related to Cemcap project have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 641185.

https://www.sintef.no/projectweb/cemcap/

