CEMCAP is a Horizon
2020 project with the
objective to prepare the
grounds for cost- and
resource-effective CCS in
European cement
industry.

#### Simon Roussanaly, Chao Fu, Mari Voldsund, Rahul Anantharaman

SINTEF Energy Research, Trondheim, Norway

#### Maurizio Spinelli, Matteo Romano

Politecnico di Milano, Milano, Italy

#### **Contact:**

Simon.Roussanaly@sintef.no

www.sintef.no/cemcap
Twitter: @CEMCAP\_CO2



This project is funded by the European Union's Horizon 2020 Framework Programme for research and innovation

# Techno-economic analysis of MEA CO<sub>2</sub> capture from a cement kiln – impact of steam supply scenario

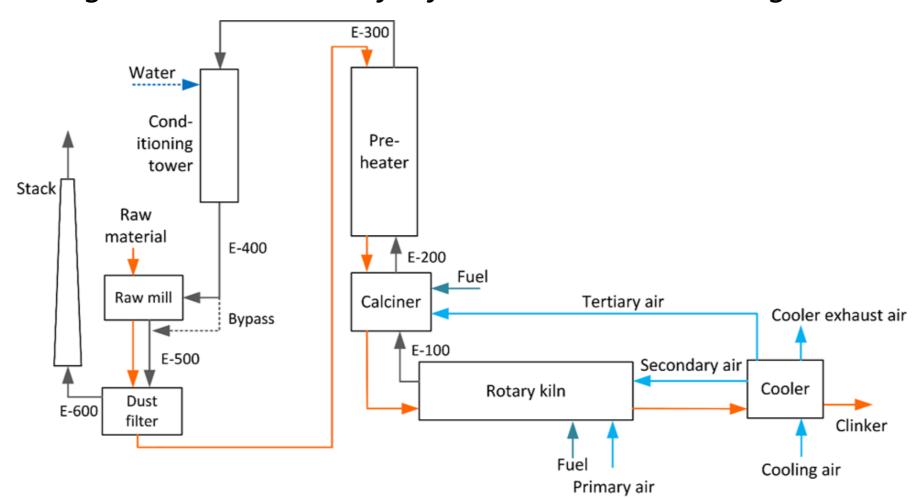
#### Introduction

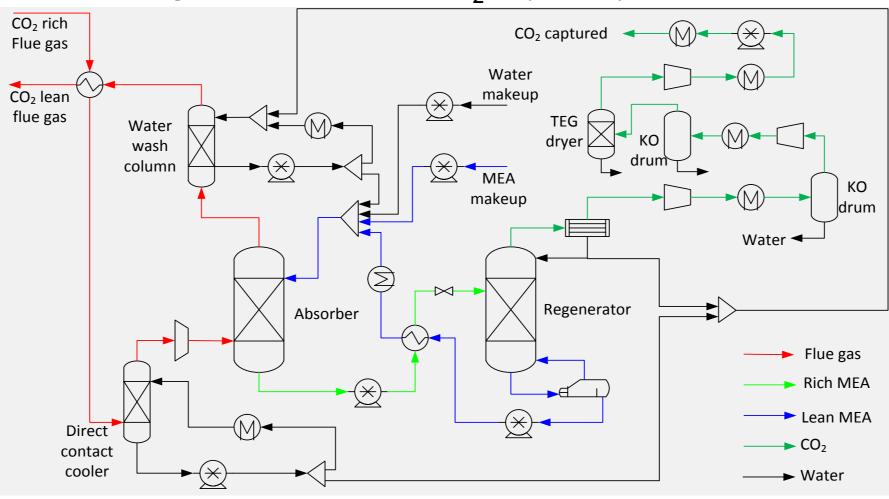
For  $CO_2$  capture by amines, steam is required for solvent regeneration. When  $CO_2$  capture by amines is applied to power plants, steam can be extracted at the plant, while this is not the case at cement plants. In this work we investigate the impact of steam supply scenario on cost of MEA  $CO_2$  capture in a cement plant.

#### Reference cement plant

The cement plant studied is the reference cement plant in the CEMCAP project. This is a Best Available Technique plant producing 1 Mt clinker (1.36 Mt cement) per year. Direct CO<sub>2</sub> emissions are 622 kg/ton cement and indirect emissions are 30 kg/ton cement.

Figure 1. Flowsheet of reference cement burning line.





Table 1. Flue gas conditions at stack.

| Parameter                               | First ½ year | Second ½ year |
|-----------------------------------------|--------------|---------------|
| Total flow rate [kg/h]                  | 318,192      | 388,098       |
| Temperature [°C]                        | 130          | 110           |
| Gas phase composition, wet basis [vol%] |              |               |
| CO <sub>2</sub>                         | 22           | 18            |
| N <sub>2</sub>                          | 60           | 63            |
| O <sub>2</sub>                          | 7            | 10            |
| H <sub>2</sub> O                        | 11           | 9             |

### Modelling of CO<sub>2</sub> capture system

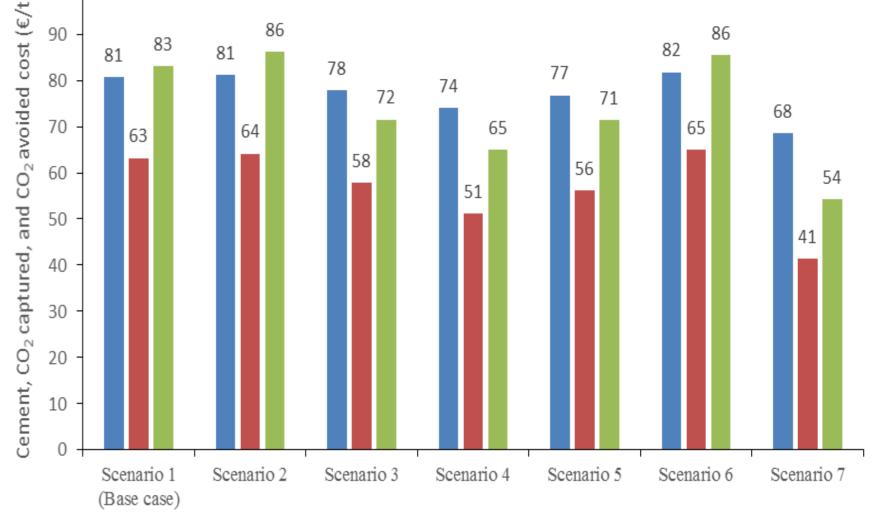
The MEA system (Figure 2) was modelled with Aspen HYSYS V8.8, with the Acid Gas and SRK property packages. Column sizing was performed with SULCOL V3.2.20.

Figure 2. The MEA CO<sub>2</sub> capture process.



## Cost of cement, CO<sub>2</sub> captured and CO<sub>2</sub> avoided

Cost of cement without and with  $CO_2$  capture is given in Table 2. For the case with  $CO_2$  capture cost of steam make up 1/3 of variable opex. Cost and climate impact of steam vary significantly between different steam sources and electricity prices (Table 3). The impact of steam supply scenario (Table 4) can be seen in Figure 3.


Table 2. Cost of cement.

| Cost of cement [€/t <sub>cement</sub> ]                      | Without CO <sub>2</sub> capture | With CO <sub>2</sub> capture (base case) |
|--------------------------------------------------------------|---------------------------------|------------------------------------------|
| CO <sub>2</sub> capture rate                                 | 0                               | 0.90                                     |
| Raw meal                                                     | 3.68                            | 3.68                                     |
| Fuel                                                         | 6.92                            | 9.92                                     |
| Electricity                                                  | 5.64                            | 9.69                                     |
| Steam                                                        | 0                               | 14.19                                    |
| Cooing water                                                 | 0                               | 0.65                                     |
| Other variable costs                                         | 0.80                            | 2.32                                     |
| Variable OPEX                                                | 17.03                           | 37.44                                    |
| Operative, administrative and support labor                  | 6.40                            | 9.03                                     |
| Insurance and local taxes                                    | 3.08                            | 4.72                                     |
| Maintenance cost (incl maintenance labor)                    | 3.85                            | 5.90                                     |
| Fixed OPEX                                                   | 13.33                           | 19.64                                    |
| CAPEX                                                        | 14.99                           | 23.60                                    |
| Cost of cement                                               | 45.3                            | 80.7                                     |
| CO <sub>2</sub> captured cost [€/t <sub>CO2,captured</sub> ] | -                               | 63.2                                     |
| CO <sub>2</sub> avoided cost [€/t <sub>CO2,avoided</sub> ]   | -                               | 83.2                                     |
|                                                              |                                 |                                          |

Table 3. Cost of steam.

| Steam source                                 | Cost<br>[€/MWh <sub>th</sub> ] | Climate impact [kg <sub>CO2</sub> /MWh <sub>th</sub> ] |
|----------------------------------------------|--------------------------------|--------------------------------------------------------|
| Waste heat available on the plant            | 7                              | 0                                                      |
| Natural gas boiler                           | 25                             | 205                                                    |
| External coal power plant, el. cost 58 €/MWh | 13.5                           | 178                                                    |
| External coal power plant, el. cost 80 €/MWh | 18.5                           | 178                                                    |
| Natural gas CHP, el. cost 58 €/MWh           | 27.5                           | 205                                                    |
| Natural gas CHP, el. cost 80 €/MWh           | 3.5                            | 205                                                    |

Figure 3. Cost depending on steam supply.



■ Cement cost (€/tcement)
■ CO2 captured cost (€/tCO2,captured)
■ CO2 avoided cost (€/tCO2,avoided)

Table 4. Steam supply scenarios.

| Scenario               | Steam supply                                                                                          |
|------------------------|-------------------------------------------------------------------------------------------------------|
| Scenario 1 (base case) | Natural Gas boiler and 7% from waste heat recovery                                                    |
| Scenario 2             | Natural Gas boiler and 0% from waste heat recovery                                                    |
| Scenario 3             | Natural Gas boiler and 30% from waste heat recovery                                                   |
| Scenario 4             | Extracted prior of LP Steam turbine [11] (electricity price 58 €/MWh) and 7% from waste heat recovery |
| Scenario 5             | Extracted prior of LP Steam turbine (electricity price 80 €/MWh) and 7% from waste heat recovery      |
| Scenario 6             | Natural gas CHP plant (electricity price 58 €/MWh) and 7% from waste heat recovery                    |
| Scenario 7             | Natural gas CHP plant (electricity price 80 €/MWh) and 7% from waste heat recovery                    |

#### Conclusion

Cost of CO<sub>2</sub> capture at a cement plant is highly dependent on the steam supply and electricity cost. CO<sub>2</sub> avoided cost can decrease by up to 35% compared to the base case depending on steam supply and electricity price