

WP4 - CO₂ capture Industrial case studies

Consortium Day 2015, Oslo

Stefania Osk Gardarsdottir Chalmers University of Technology

The NORDICCS Concept

Case study example: BioCCS - Pulp&Paper

The pulp mill

Investigated scenarios

Scenario	Recovery	Additional	Capture	Capture
	system	product	technology	technology
RB	Recovery boiler	n/a	Post- combustion	MEA
BLGCC	Black liquor gasification	Electricity	Pre-combustion	Selexol
BLGMF	Black liquor gasification	DME	Pre-combustion	Rectisol

Recovery boiler with PCC

Black Liquor Gasification

Black Liquor Gasification

- BLG combined cycle (BLGCC)
- BLG with motor fuel production (BLGMF)

Results summary

Utility [kJ/kg CO ₂ captured]	RB	BLGCC	BLGMF
Steam	3760	0	0
Cooling water	4460	1130	370
Electricity	360	1110	220
Net reduction potential [ktCO ₂ /year]	715	318	393
Specific CO ₂ capture cost [€/tCO ₂]	46	48	9

Östrand pulp mill, Sweden

- Three scenarios of future development scenarios in the pulp mill were investigated:
 - Continued use of the conventional recovery boiler
 - Black Liquor Gasification (BLG) with electricity production
 - BLG with motor fuel production
- Pulp and paper industry could be a suitable future candidate for BECCS (Bio-Energy with Carbon Capture and Storage)
- Implementation of CO₂ capture in connection with BLG technology requires relatively low additional utility and specific capture cost, compared with conventional post-combustion capture

Fictive integrated steel mill, Finland

- Concept studied: Modifying blast furnace (BF) and replacing gas boiler with GTCC
 - Increased Pulverized Coal Injection and reduced coke consumption in BF = higher BF top gas heating value
 - Replacing power plant gas boiler with high-efficiency low-BTU gas turbine combined cycle
 - WGS + CCS (MEA and Selexol)
- Main results:
 - Up to 80% reduction in CO_2 emissions from power plant
 - 2 2.5 times increase in power output possible (depending on process configuration and CO_2 capture method)

Norcem cement plant, Brevik, Norway

- Concept studied: Implementation of MEA based postcombustion and oxyfuel-combustion CO₂ capture
- Main results:
 - Approx. 22% of the heat requirement can be covered with waste heat.
 - For oxyfuel-combustion, the rate of air in-leakage should be kept to a minimum to ensure effective CO₂ capture. Capture rates in the range of 88-96%.

Preem Refinery, Lysekil, Sweden

 Concept studied: Partial CO₂-capture with focus on the steam methane-reforming (SMR), the fluid catalytic cracker and a combined stack (mainly gas heaters)

- Post-combustion with MEA and ammonia was investigated

- Main results:
 - 25% of plant emissions may be captured from the SMR alone and at more than 10% lower specific heat requirement than the plant average
 - Around 20% of the heat requirement for capture from SMR can be covered with waste heat

Hellisheiði geothermal power plant, Iceland

- Concept studied: Various process alternatives for H_2S and CO_2 separation from volatile components (CH_4 , N_2 , H_2).
 - Water wash (reference); MDEA absorption; Low-temperature separation; MDEA/Low-temperature hybrid
- Main results:
 - Water wash was found to be the most energy-efficient process (cold water available and no need for thermal stripping of the water stream)
 - The different alternatives give very different product outputs
 - Pressure and purity of H₂S and CO₂ streams; for some cases H₂

WP4 concluding remarks

- Applying carbon capture technologies can be technically feasible for a broad set of process conditions
- Specific process conditions are important → strong influence on the choice of capture technology
 - Considerable savings in capture cost possible by considering specific process and site conditions as well as possible industrial process developments