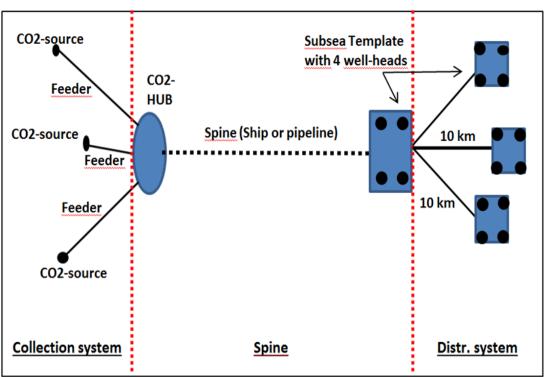

Recommended CO₂ transport solutions in the Nordic region

NORDICCS Oslo November 10th, 2015


Jan Kjärstad, Chalmers, Sweden Nils Henrik Eldrup and Ragnhild Skagestad, Tel-Tek, Norway

Emission sources¹ (green) and 3 relevant storage sites² (light yellow) in the Nordic region (Iceland not shown)

1: All sources with 2010 emissions of at least 100 ktons, 2: Size/shape illustrative only

System parameters

- Cost calculations start after compression up to 70 bar
 - Cost calculations end at the last injection well at 70 bar
- Minimum pressure 70 bar
- All transport distances measured in GIS – 10% added offshore, 20% onshore
- Max pipeline diameter 48".
- Ship size max $40,000 \text{ m}^3$
- Ship transport at 7 bar/-50°C, 12 knots, 16 h for loading, 54 h for unloading
- Cost includes subsea templates distribution lines, well heads, umbilicals
- 2012 €, NPV, 8% discount rate

Applied methodology

- Compared cost ship versus pipe as a function of volume and distance
- Calculated Pipeline volumetric break-even point for eight selected sites
- Calculated specific transport cost for eight selected sites
- Investigated the potential role of injectivity on the choice of reservoir (and transport route)
- Analysed the effect of underutilised pipelines on cost for pipeline transport (not shown here).

Main conclusions

- Ship transport is the least costly transport option for *most of* the sources in the region individually.
- Ship transport is the least costly transport option for *most of* the potential cluster systems in the region during ramp-up.
- Kattegatt-Skagerrak region offers the best prospects for build-up of a *pipeline* transportation system.
- Poor storage/injection capacity in reservoirs in the Baltic Sea may make it more cost efficient to transport the CO₂ to storage sites in the Skagerrak region or in the North Sea.
- Regulatory barriers still remaining both for export of CO₂ for storage as well as for ship transport of CO₂.
- Positioning of ship during injection and discharging from ship need to be demonstrated

Acknowledgement

Discussions with geologists at Sintef, Norway and with personnel at Gassco, Norway greatly appreciated.

The work has been funded by the Nordic Top-level Research Initiative and was performed in the Nordic Centre of Excellence for CCS, named NORDICCS.