

Norwegian University of Science and Technology

Challenges related to purification of hydrolysate

Ignat T.

Norwegian University of Science and Technology

High value of RRM

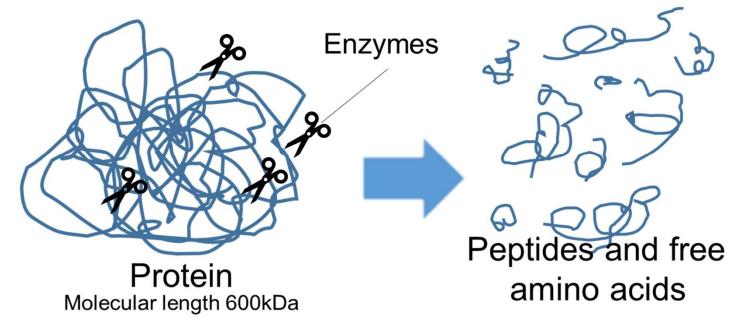
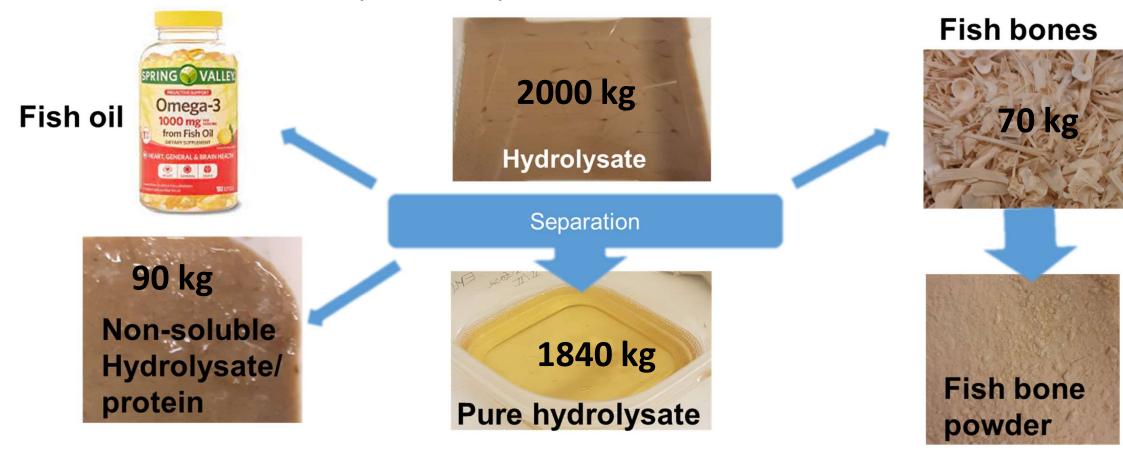

Nutrients	By-products	Whole body		
	Heads	Backbones	Average	
Salmon				
Moisture	66	64.3	65.1	58.8
Lipids	16.7	15.2	16.0	21.3
Proteins	11.3	14.1	12.7	17.5
Ash	6.0	6.4	6.2	2.4
Cod				
Moisture	79.5	75.0	77.3	75.3
Lipids	0.3	0.4	0.4	5.7
Proteins	13.9	15.2	14.6	13.0
Ash	5.6	9.0	7.3	3.4

Table 1 Chemical composition of by-products and whole fish for salmon and cod

\square NTNU

Main principle

Just fish heads


Just protein in fish heads

Protein based product with new properties

Valuable By-flows of hydrolysate: need for separation

Simultaneous efficient separation of lipids and other solids:

NTNU

Ways of hydrolysate utilization

Essential functional properties of fish protein hydrolysate:

- ✓ New feed for fish and juveniles: increasing of weight and tolerance to deceases.
- ✓ Substrate for microbiologyNew food and bio-ingredient:
- ✓ Relatively cheap protein with high bio-value
- ✓ Protein for athletes
- ✓ Antioxidant
- ✓ Cryoprotectant
- ✓ Anti-hypertensive activities
- ✓ Stucturant (bio-glue for other protein products like fish and meat)
- ✓ Flavorant

Different degree of hydrolysis and different fractions of peptides influence the final use: separation is important

New sport proteins?

NUTRITIONAL INFORMATION

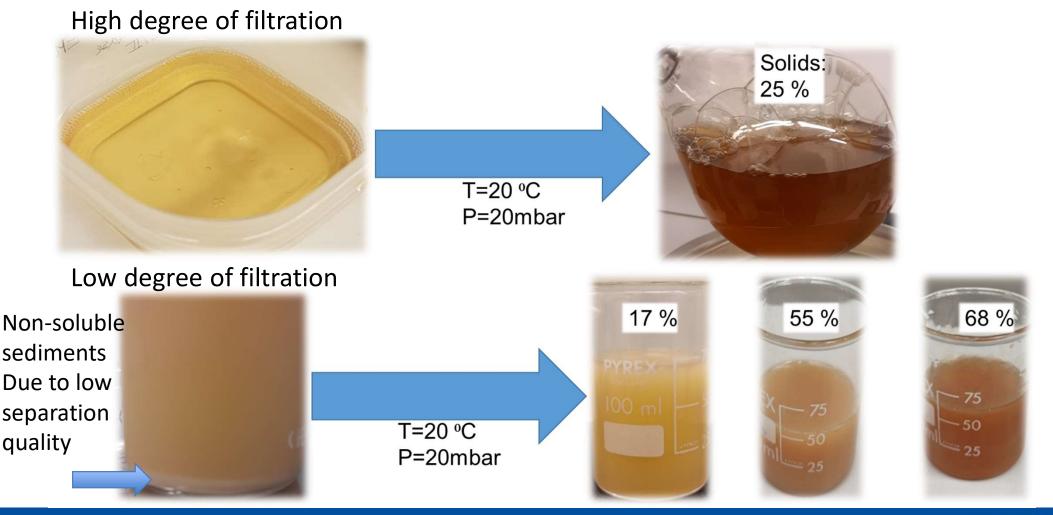
Nutritional Information	per 100 g	to ideal protein				
						Nano and
Calories	1465 / 350 <mark>kj</mark> / kcal		Not		Bottom	micro-
			separated	Top layer	layer	filtration
Fat	3,5 g	His	83.3%	74.7%	70.0%	92.0%
from Saturated fatty acids	1,2 g	Thr	206.5%	204.8%	219.6%	203.0%
		Met	108.2%	110.0%	110.9%	107.7%
Carbohydrates	6 g	Val	111.0%	110.0%	112.8%	107.4%
		Phe	68.2%	63.4%	76.1%	63.9%
from Sugar	3,6 g	lle	95.7%	94.0%	103.0%	94.0%
	71 g	Leu	102.7%	99.5%	120.3%	99.3%
<u>Protein</u>		Lys	141.3%	139.8%	141.1%	141.8%
Salt	0,88 g	Decrease bitterness of hydrolysate?				

Ratio of essential aminoacids in hydrolysate to ideal protein

NTNU

Ways of bones utilization Calcium from salmon and cod bone is well absorbed

in young healthy men: a double-blinded randomised crossover design

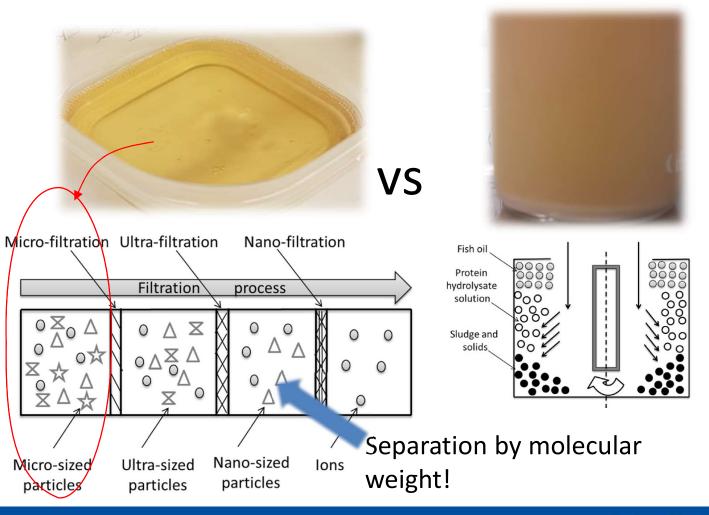

Marian K Malde [™], <u>Susanne Bügel</u>, <u>Mette Kristensen</u>, <u>Ketil Malde</u>, <u>Ingvild E Graff</u> & <u>Jan I Pedersen</u>

Nutrition & Metabolism 7, Article number: 61 (2010) Cite this article

Proprietary Blend (700mg/capsule) <u>Calcium Fish Bone Powder (</u>MCHC), Magnesium Citrate, Vitamin K2 (MK-7), UAF1000+ Superfoods (Pine Bark Extract, Grape Seed Extract, Red Grape Skin Extract, Kiwifruit Extract, Blackcurrant Extract, Boysenberry Extract, Fulvic Acid), Vitamin D3.

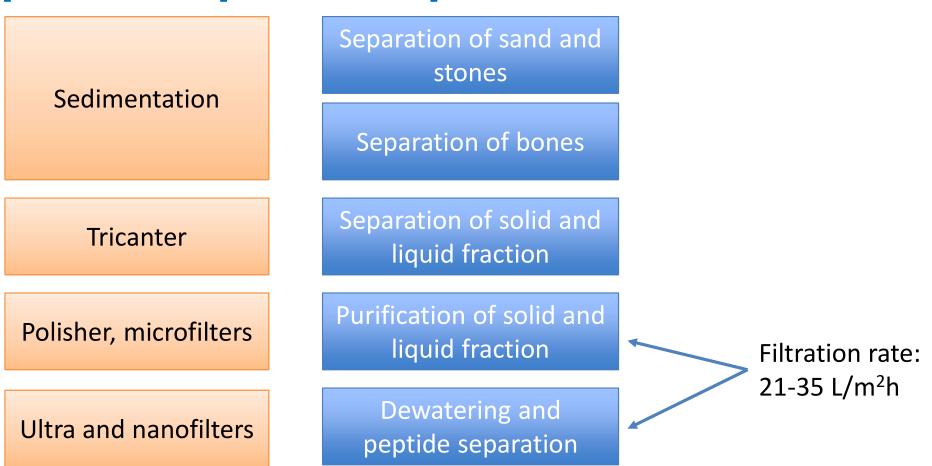
Does filtration method influence on quality?

NTNU


Does other processing methods influence on quality?

Top: Raw hydolysat vacuum freeze dried (VFD), Separated VFD, Sediments VFD, Nanofiltrated VFD Bottom: Spray dried (sD) raw, SD separated, SD sediments, SD after vacuum concentration raw hydrolysate Particle size and separation level influence on color characteristics High temperature long drying influence on color - browning

Experiments with purification of hydrolysate



Application of separation methods, cod heads hydrolysate

Sample	Solids, %	Salt,%	Protein, %
Not processed hydrolysate	7.81	0.93	6.59
Top fraction (sedimentation)	7.06	0.92	6.08
Bottom fraction (sedimentation)	9.09	0.79	7.15
White ribbon (4-12 µm)	7.10	0.65	6.39
Blue ribbon (<2 μm)	5.82	N/A	5.24
Nanofiltration (<2 nm)	20.14	<u>0.74</u>	18.71

Optimal separation procedure

Filter size over 51 m² for flow of rest raw material of 1000kg per h

Conclusions

- ✓ By flows of hydrolysate production are valuable and have market potential
- Separation is essential for high quality and diversification of the production
- ✓ Separation should be conducted in several steps this is the key for high quality final product
- Nanofiltration helps to decrease salt concentration and dewater the product
- Process of micro and nanofiltration requires high area of filters

Norwegian University of Science and Technology

THANK YOU FOR YOUR ATTENTION Questions are welcome

