

RESILIENCE ENGINEERING AND THE RELATION TO THE TORC APPROACH

Dr. Robert J. de Boer, *lector* of Aviation Engineering Final industrial workshop for the TORC project Utrecht, Netherlands, Dec 1st 2016

CREATING TOMORROW

AMSTERDAM UNIVERSITY OF APPLIED SCIENCES

- Some facts:
 - a total of 47,000 students
 - a total of 80 bachelor and master programmes
 - seven schools
- At the moment making the transition from educational institution to research and educational institution
- Aviation Academy is part of the School of Technology.
 - 500 new students each year
 - A total of 1300 students

OUR ACTIVITIES

OUR ACTIVITIES

QANTAS FLIGHT QF 32 4 NOVEMBER 2010

Hole through wing leading edge

100

Hole through upper wing structure

QF 32 4 NOVEMBER 2010

TIME LINE QF32

ANALYSIS ACCORDING TO TORC RESILIENCE FRAMEWORK (IN THE AIR)

- Situation Awareness
 - "Boom ... Boom"
 - Altitude hold selected
 - Stable
- Sensemaking (problem analysis 50 minutes)
 - Defined Hazard & Accident Scenario → Emergency training
 - ECAM messages
 - Not consistently followed by crew
 - Therefore unexpected situation → Compliance must be "found" on the spot
- Anticipating (flight performance check 36 minutes)
 - Flight performance analysis for landing
- Deciding & acting: (approach & landing 19 minutes)
- (Monitoring effects decision)

ANALYSIS ACCORDING TO TORC RESILIENCE FRAMEWORK (GROUND)

- Situation Awareness
 - Fuel leaks
 - Very hot brakes
 - No stopping engine number 1
 - No flames
- Sensemaking
 - Danger of disembarking by slides
 - Danger of pax near engine
 - No A/C, grumbling pax

- Anticipating
 - Stopping number 1 engine
 - Need stairs, busses
- Deciding & acting
 - Engine #1 still runs (3:39)
 - Disembark right-hand side only
- Monitoring
 - Everyone safe
 - Gives telephone number
 - (Fails route check)

On ground waiting time: 50 minutes

US AIRWAYS FLIGHT 1549 JANUARY 15, 2009

www.hva.nl/techniek

ANALYSIS ACCORDING TO TORC RESILIENCE FRAMEWORK

- Situation Awareness
 - "Birds"
 - "Both of 'em rolling back"
- Sensemaking
 - Defined Hazard & Accident Scenario → Emergency training
 - Quick Reference Handbook Engine Dual Failure [but valid > 20 000 foot..]
 - Quick Reference Handbook Ditching [but valid with at least one engine..]
 - Time too short, not recognized by crew
 - Therefore unexpected situation → Compliance to be "found" on the spot
- Anticipating & deciding
 - "We may end up in the Hudson"
- (Monitoring effects decision)

SENSEMAKING DELAYS

www.hva.nl/techniek

Not Noah!

PERCEIVE & BELIEVE

• How many of each animal did Mozes take along in the Arc?

Kahneman, D. (2011). Thinking, fast and slow (1st ed.).

THE CREW-AIRCRAFT CONTEXTUAL CONTROL LOOP

SENSEMAKING TEST

LOG-LOG DISTRIBUTION OF SENSEMAKING (N=81)

FLIGHT SIMULATION EXPERIMENTS

- 31 graduated, inexperienced, dyads
- PF / PM configuration
- A320 Touch Screen Trainer simulator
- Amsterdam Schiphol London Heathrow

FLIGHT SIMULATION EXPERIMENTS

- Manipulation: Engine #1 stuck in idle mode
 - Discrepancy ENG 1 / 2 in:
 - N1 / N2 speeds
 - Exhaust Gas Temperature
 - Fuel Flow
 - Rudder deflection
 - No cautions on ECAM
- Dependent variable: Detection time

LOG-LOG DISTRIBUTION OF SENSEMAKING (N=27)

Adapted from: Heems, W.J.H.; A. Speet, R.S. Stam (2012): Automation Surprise.

SO HOW TO IMPROVE RESILIENCE?

www.hva.nl/techniek

1. ENABLE TRAINING

Duration until detection for single pilots

31

De Boer, Heems & Hurts (2014)

2. IMPROVE KNOWLEDGE BASE

Please state which causes are applicable to your last Automation Surprise (N=180, multiple answers possible)

De Boer (2016)

3. WORK TOGETHER (1)

3. WORK TOGETHER (2)

4. DESIGN FOR SENSEMAKING DELAYS

5. ENSURE REPORTING & ACTING

CONTACT

- Lector of Aviation Engineering: Robert J. de Boer, rj.de.boer@hva.nl
- Website: http://www.hva.nl/aviation