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Why Bayes?

Provides a framework for data assimilation.

All data assimilation methods can be deduced from it.



Principle of Bayesian analysis

"The probability of A given B is not the same as the probability of B
given A".

P (A|B) 6= P (B|A)

Non-Bayesian probabilities for data knowing the parameters.

Bayesian probabilities for parameters knowing the data.



The Bayes theorem

By definition of conditional probabilities:

P (A ∩ B) = P (A|B)P (B)

= P (B|A)P (A)
[

= P (A)P (B)
]

∗

Thus the Bayes theorem

P (B|A) =
P (A|B)P (B)

P (A)
=

P (A|B)P (B)

P (A|B)P (B) + P (A|!B)P (!B)

P (B|A) ∝ P (A|B)P (B)

(∗ if A and B are independent)



Practical problem

1% of women aged 40 have breast cancer

A mammography test has 80% success rate

A mammography test has 10% false alarm rate

A woman receives a positive mammography test, what is the
probability that she actually has cancer?

P (B|A) =
P (A|B)P (B)

P (A|B)P (B) + P (A|!B)P (!B)

Notations:
A: Mammo+, !A: Mammo-
B: Cancer, !B: Healthy



Solution

P (B|A) =
80 × 1

80 × 1 + 10 × 99
= 7.5%



Conclusion

Worth taking the test?

The posterior (7.5%) is different from the prior (1%)

What if the test had been negative?

The test may be inaccurate but still helps updating the prior.



Continuous variables

The state variable ψ and its pdf: f(ψ)

The observations d and their pdf: f(d)

f(ψ|d) =
f(d|ψ)f(ψ)

∫

f(d|ψ)f(ψ)dψ

∝ f(d|ψ)f(ψ)

The denominator is difficult to compute except for very special
cases of distributions.

Gaussian variables...



The Gaussian case

The Gaussian distribution is perfectly determined by:

The mean (or "expectation" E)
The variance (and covariance for multivariate problems)

Conserved by linear combinations.

The maximum likelihood estimator coincides with the
conditional expectation E(ψ|d).

Hilbert space geometry: E(ψ|d) is also the least squares
estimator.

ψa = ψf +Cf
ψψM

T
(

MCf
ψψM

T +Cεε

)

−1(
d− Mψf

)

Ca
ψψ = Cf

ψψ −Cf
ψψM

T
(

MCf
ψψM

T +Cεε

)

−1
MCf

ψψ.



Bayesian formulation

Model equations and measurements:

∂ψ

∂t
= g(ψ) + q,

ψ|t0 = Ψ0 + a,

Mψ = d+ ε.

Bayes theorem becomes:

f(ψ,ψ0|d) ∝ f(ψ,ψ0)f(d|ψ,ψ0).

= f(ψ|ψ0)f(ψ0)f(d|ψ).



Gaussian priors

Cost function rederived using Gaussian priors.

f(ψ,ψ0|d) ∝ exp

{

−
1

2
J [ψ]

}

,

J [ψ] =

(

∂ψ

∂t
− g(ψ)

)T

•W qq •

(

∂ψ

∂t
− g(ψ)

)

+ (ψ0 −Ψ0)
T ◦W aa ◦ (ψ0 −Ψ0)

+ (Mψ − d)TW εε(Mψ − d).

Complex cost function for nonlinear systems.

MLH solution, hard to solve and to compute error estimates.



Discretisation in time

.
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dmd2 d3d1

ti(1) ti(2) ti(m)

dj

ti(j)

ti

ψi

ti(3)

. . .

. . .

. . .. . .

. . . . . .
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Assume

The recursive idea: "Today’s posterior is tomorrow’s prior"

Model is first order Markov process.

f(ψ1, . . . ,ψk,ψ0) ∝ f(ψ0)

k
∏

i=1

f(ψi|ψi−1).

Measurement errors are independent in time

f(d|ψ) =

m
∏

j=1

f(dj |ψi(j)).



Bayes for discrete state

Bayes theorem then becomes

f(ψ1, . . . ,ψk,ψ0|d) ∝ f(ψ0)

k
∏

i=1

f(ψi|ψi−1)

m
∏

j=1

f(dj |ψi(j))

Time

d_2d_1 d_m

Prediction

Update



Rewrite as:

f(ψ1, . . . ,ψk,ψ0|d) ∝ f(ψ0)

i(1)
∏

i=1

f(ψi|ψi−1)f(d1|ψi(1))

i(2)
∏

i=i(1)+1

f(ψi|ψi−1)f(d2|ψi(2)) · · ·

i(m)
∏

i=i(m−1)+1

f(ψi|ψi−1)f(dm|ψi(m))

k
∏

i=i(m)+1

f(ψi|ψi−1)



Sequential processing of measurements

First update

f(ψ1, . . . ,ψi(1),ψ0|d1) ∝ f(ψ0)

i(1)
∏

i=1

f(ψi|ψi−1)f(d1|ψi(1))

Second update

f(ψ1, . . . ,ψi(2),ψ0|d1,d2) ∝

f(ψ1, . . . ,ψi(1),ψ0|d1)

i(2)
∏

i=i(1)+1

f(ψi|ψi−1)f(d2|ψi(2))



Summary

Independent measurements processed sequentially in time.

Sequence of inverse problems.

Solution of one sub-problem is prior for next.

Hard to solve using traditional variational methods.

Well suited for ensemble methods.

Time

Updates

d_3d_1 d_2
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