Integro-PDEs: Numerical methods, Analysis, and Applications to Finance.

Espen R. Jakobsen

Department of Mathematical Sciences NTNU

Geilo, 30.1.2006

eVita project 176877/V30

- Type: Researcher Project
- **Tittel:** Integro-PDEs: Numerical methods, Analysis, and Applications to Finance.

Briefly:

• Integro-partial differential equations (integro-PDEs) is a class of equations used in modern advanced models of the value of different types of contracts/"utilities" in Finance.

eVita project 176877/V30

- Type: Researcher Project
- **Tittel:** Integro-PDEs: Numerical methods, Analysis, and Applications to Finance.

Briefly:

- Integro-partial differential equations (integro-PDEs) is a class of equations used in modern advanced models of the value of different types of contracts/"utilities" in Finance.
- Many questions regarding how such models/equations can be computed numerically are unresolved/unanswered, both practical and theoretical questions.

eVita project 176877/V30

- Type: Researcher Project
- **Tittel:** Integro-PDEs: Numerical methods, Analysis, and Applications to Finance.

Briefly:

- Integro-partial differential equations (integro-PDEs) is a class of equations used in modern advanced models of the value of different types of contracts/"utilities" in Finance.
- Many questions regarding how such models/equations can be computed numerically are unresolved/unanswered, both practical and theoretical questions.
- In this project we will focus on different challanges related to the numerical solution of such equations.

Participants and Budget

Participants:	Espen R. Jakobsen Kenneth H. Karlsen PhD student PostDoc		NTNU CMA, UiO NTNU NTNU/UiO	(Project leader)	
Budget:	2006 200 173k 1040	7 2008 k 1388k	2009 867k		
Financed:	1 PhD (3 years), 1 PostDoc (2 years), other funds.				
	Other funds: - Guests - Travels - Equipment (computers/books)				

Timeline

		PhD	PostDoc	Other funds
2006	4	*		*
2007	1	*		*
	2	*		*
	3	*	*	*
	4	*	*	*
2008	1	*	*	*
	2	*	*	*
	3	*	*	*
	4	*	*	*
2009	1	*	*	*
	2	*	*	*
	3	*		*
	4	*	4. year paid for by	
2010	1	*	IMF/NTNU	
	2	*		
	3	*		

Progress and Expected Benefits

Progress:

Expected Benefits:

- Hired one PhD student (Simone Cifani)

- 2 travels and 4 guest-visits completed/planed.
- New knowlegde in an active, popular, and interdisiplinary area of research.
- Research on a high international level.
- Publications in international journals.
- Education of sought-after candidates for the finance sector, a sector in rapid growth.
- Strengthening of international and national research networks.
- The project contributes to increased activities within "hovedsatsningsområdene" of NTNU/CMA.

Project Backgound

Overview:

- 1. The Portfolio Problem in Finance.
- 2. Mathematical model.
- 3. Solving the problem I. Integro-PDEs.
- 4. Solving the problem II. Numerics ...

1. The Portfolio Problem in Finance.

How to manage a portfolio consisting of a stock (hight risk and return) and a bankaccount (low risk and return) in a way that maximizes a given utility function. Typically: Want high return and low risk.

I.e. one seeks a stategy which at any given time tells you what proportion of the wealth to invest in the stock and what proportion to invest in the bank.

2. Mathematical model.

The value of the stock and the bankaccount is modelled using stochastic differential equations:

$$dX_t = b(X_t, \theta_t)dt + \sigma(X_t, \theta_t)dW_t + \int_z j(X_t, \theta_t, z)\bar{\nu}(dz, ds), \quad t > 0.$$

$$X_0 = x.$$

[Brown terms: Old model, brown+blue: modern/accurate model]

The strategy θ_t yields the proportion of the wealth that is invested in the stock. The task is to find θ_t such that the expected utility is maximized:

$$\max_{\theta_{\cdot}} E\left[\int_0^t f(X_s, \theta_s) ds + g(X_t)\right] =: \frac{u(t, x)}{u(t, x)}.$$

The quantity u(t, x) is called the value function of the problem.

3. Solving the problem I. Integro-PDEs.

It can be shown that the value function u(t, x) satisfy an integro-PDE:

$$u_t + \sup_{\vartheta} \left\{ -\mathcal{L}^{\vartheta} u - \mathcal{I}^{\vartheta} u - f(x, \vartheta) \right\} = 0, \quad t > 0,$$
$$u(0, x) = g(x).$$

where

$$\mathcal{L}^{\vartheta}u(x) = \frac{1}{2}\operatorname{tr}\left[\sigma(x,\vartheta)\sigma(x,\vartheta)^{T}D^{2}u(x)\right] + b(x,\vartheta)Du(x),$$

$$\mathcal{I}^{\vartheta}u(x) = \int_{z}\left[u(t,x+j(x,\vartheta,z)) - u(x) - \mathbf{1}_{|z|<1}j(x,\vartheta,z)Du(x)\right]\nu(dz).$$

If this equations can be solved, then the (almost) optimal stategy ϑ_t can typically be found using a simple iterative method.

- 4. Solving the problem II. Numerics ...
 - Integro-PDEs can not be solved excactly. Need numerics.
 - Challanges:
 - The problem is degenerate.

- 4. Solving the problem II. Numerics ...
 - Integro-PDEs can not be solved excactly. Need numerics.
 - Challanges:
 - The problem is degenerate.
 - The solutions can be non-differentiable.

- 4. Solving the problem II. Numerics ...
 - Integro-PDEs can not be solved excactly. Need numerics.
 - Challanges:
 - The problem is degenerate.
 - The solutions can be non-differentiable.
 - Non-linear problem.

- 4. Solving the problem II. Numerics ...
 - Integro-PDEs can not be solved excactly. Need numerics.
 - Challanges:
 - The problem is degenerate.
 - The solutions can be non-differentiable.
 - Non-linear problem.
 - Multi-dimensional.

- 4. Solving the problem II. Numerics ...
 - Integro-PDEs can not be solved excactly. Need numerics.
 - Challanges:
 - The problem is degenerate.
 - The solutions can be non-differentiable.
 - Non-linear problem.
 - Multi-dimensional.
 - Non-diagnonal dominant matrices.

- 4. Solving the problem II. Numerics ...
 - Integro-PDEs can not be solved excactly. Need numerics.
 - Challanges:
 - The problem is degenerate.
 - The solutions can be non-differentiable.
 - Non-linear problem.
 - Multi-dimensional.
 - Non-diagnonal dominant matrices.
 - Non-local problem: Integral terms.

- 4. Solving the problem II. Numerics ...
 - Integro-PDEs can not be solved excactly. Need numerics.
 - Challanges:
 - The problem is degenerate.
 - The solutions can be non-differentiable.
 - Non-linear problem.
 - Multi-dimensional.
 - Non-diagnonal dominant matrices.
 - Non-local problem: Integral terms.
 - The integral term can be singular.

- 4. Solving the problem II. Numerics ...
 - Integro-PDEs can not be solved excactly. Need numerics.
 - Challanges:
 - The problem is degenerate.
 - The solutions can be non-differentiable.
 - Non-linear problem.
 - Multi-dimensional.
 - Non-diagnonal dominant matrices.
 - Non-local problem: Integral terms.
 - The integral term can be singular.
 - What boundary conditions to pose?

- 4. Solving the problem II. Numerics ...
 - Integro-PDEs can not be solved excactly. Need numerics.
 - Challanges:
 - The problem is degenerate.
 - The solutions can be non-differentiable.
 - Non-linear problem.
 - Multi-dimensional.
 - Non-diagnonal dominant matrices.
 - Non-local problem: Integral terms.
 - The integral term can be singular.
 - What boundary conditions to pose?
 - Problem formulated on an unbounded domain.
 - Boundary conditions will not always be assumed. (Compatibility)
 - The integral term looks outside the boundary.

- 4. Solving the problem II. Numerics ...
 - Integro-PDEs can not be solved excactly. Need numerics.
 - Challanges:
 - The problem is degenerate.
 - The solutions can be non-differentiable.
 - Non-linear problem.
 - Multi-dimensional.
 - Non-diagnonal dominant matrices.
 - Non-local problem: Integral terms.
 - The integral term can be singular.
 - What boundary conditions to pose?
 - Problem formulated on an unbounded domain.
 - Boundary conditions will not always be assumed. (Compatibility)
 - The integral term looks outside the boundary.
 - Can yield demanding computations.

- 4. Solving the problem II. Numerics ...
 - Integro-PDEs can not be solved excactly. Need numerics.
 - Challanges:
 - The problem is degenerate.
 - The solutions can be non-differentiable.
 - Non-linear problem.
 - Multi-dimensional.
 - Non-diagnonal dominant matrices.
 - Non-local problem: Integral terms.
 - The integral term can be singular.
 - What boundary conditions to pose?
 - Problem formulated on an unbounded domain.
 - Boundary conditions will not always be assumed. (Compatibility)
 - The integral term looks outside the boundary.
 - Can yield demanding computations.
 - The problems are understood/investigated only in very simple cases.

- 4. Solving the problem II. Numerics ...
 - Integro-PDEs can not be solved excactly. Need numerics.
 - Challanges:
 - The problem is degenerate.
 - The solutions can be non-differentiable.
 - Non-linear problem.
 - Multi-dimensional.
 - Non-diagnonal dominant matrices.
 - Non-local problem: Integral terms.
 - The integral term can be singular.
 - What boundary conditions to pose?
 - Problem formulated on an unbounded domain.
 - Boundary conditions will not always be assumed. (Compatibility)
 - The integral term looks outside the boundary.
 - Can yield demanding computations.
 - The problems are understood/investigated only in very simple cases.
 - Only "simple" numerical metods have been tested.

- 4. Solving the problem II. Numerics ...
 - Integro-PDEs can not be solved excactly. Need numerics.
 - Challanges:
 - The problem is degenerate.
 - The solutions can be non-differentiable.
 - Non-linear problem.
 - Multi-dimensional.
 - Non-diagnonal dominant matrices.
 - Non-local problem: Integral terms.
 - The integral term can be singular.
 - What boundary conditions to pose?
 - Problem formulated on an unbounded domain.
 - Boundary conditions will not always be assumed. (Compatibility)
 - The integral term looks outside the boundary.
 - Can yield demanding computations.
 - The problems are understood/investigated only in very simple cases.
 - Only "simple" numerical metods have been tested.
 - There is a lack of theory.

Focus of the Project

Numerical metods

Related theory

- Developement, testing, and analysis of:

- + High order methods
- + Metods using unstructured grids
- + Choice/discretization of boundary conditions
- Develope a framework for error estimates.
- Analyse and solve numerically concrete models from finance: Portfolio problems with fixed transaction costs.
- Study regularity of solutions of integro-PDEs. (Error analysis)
- Study boundary value problems for integro-PDEs. (Numercal boundary conditions)