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’Iacta Alea est’, the die is cast!

Plan for the lectures

1 January 28: Introduction to Monte Carlo methods,
probability distributions and Monte Carlo Integration.

2 January 29: Random numbers, Markov chains, diffusion
and the Metropolis algorithm.

3 January 30: Applications in sociology, simulations of phase
transitions in physics and quantum physics.

4 All material taken from my text on Computational Physics,
see http://www.uio.no/studier/emner/matnat/
fys/FYS3150/h06/undervisningsmateriale/
LectureNotes/ .
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http://www.iop.org/EJ/journal/CSD

www.iop.org/journals/csd

N E W  F O R  2 0 0 6

Uniquely driven by the aim to publish multidisciplinary scientific advances, 

together with details of their enabling technologies.
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What is Monte Carlo?

1 Monte Carlo methods are nowadays widely used, from the
integration of multi-dimensional integrals to solving ab initio
problems in chemistry, physics, medicine, biology, or even
Dow-Jones forecasting. Computational finance is one of
the novel fields where Monte Carlo methods have found a
new field of applications, with financial engineering as an
emerging field.

2 Numerical methods that are known as Monte Carlo
methods can be loosely described as statistical simulation
methods, where statistical simulation is defined in quite
general terms to be any method that utilizes sequences of
random numbers to perform the simulation.
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Monte Carlo Keywords

Consider it is a numerical experiment

Be able to generate random variables following a given
PDF

Find a probability distribution function (PDF).

Sampling rule for accepting a move

Compute standard deviation and other expectation values

Techniques for improving errors
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The Plethora of Applications; from the Sciences to
Social Studies

1 Quantum Physics and Chemistry: Variational, Diffusion
and Path Integral Monte Carlo

2 Simulations of Phase transitions, classical ones and
quantal ones such as superfluidity (quantum liquids)

3 Lattice Quantum-Chromo-Dynamics (QCD), the only way
to test the fundamental forces of Nature. (Own dedicated
High-Performance-Computing machine).

4 Reconstruction of particle-collisions’ paths at for example
CERN

5 Solution of Stochastic differential equations
6 Dow-Jones forecasting and financial engineering
7 Modelling electoral patterns
8 Ecological evolution models, percolation, wood fires,

earthquakes....and so forth
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Selected Texts

C. R. Robert and G. Casella,Monte Carlo Statistical Methods, Springer, 2nd
edition 2004.

M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics,
Oxford University Press, 1999.

P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer, 2003.

B. L. Hammond, W. A. Lester, Jr., P. J. Reynolds, Monte Carlo Methods in Ab
Initio Quantum Chemistry, World Scientific, 1994.

G. S. Fishman, Monte Carlo Methods, Concepts, Algorithms and Applications,

First National Winter School in eScience Lecture I, January 28 2007



Introduction PDF MC Integration

Important Application: Monte Carlo Integration
Consider

I =

Z 1

0
f (x)dx ≈

NX
i=1

ωi f (xi ),

where ωi are the weights determined by the specific integration method (like Simpson’s
or Taylor’s methods) with xi the given mesh points. To give you a feeling of how we are
to evaluate the above integral using Monte-Carlo, we employ here the crudest possible
approach. Later on we will present more refined approaches. This crude approach
consists in setting all weights equal 1, ωi = 1. Recall also that dx = h = (b − a)/N
where b = 1, a = 0 in our case and h is the step size. We can then rewrite the above
integral as

I =

Z 1

0
f (x)dx ≈

1

N

NX
i=1

f (xi ).

Introduce the concept of the average of the function f for a given Probability
Distribution Function p(x) as

E [f ] = 〈f 〉 =
1

N

NX
i=1

f (xi )p(xi ),

and identify p(x) with the uniform distribution, viz p(x) = 1 when x ∈ [0, 1] and zero for

all other values of x .
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Monte Carlo Integration
The integral is then the average of f over the interval x ∈ [0, 1]

I =

Z 1

0
f (x)dx ≈ E [f ] = 〈f 〉.

In addition to the average value E [f ] the other important quantity in a Monte-Carlo
calculation is the variance σ2 and the standard deviation σ. We define first the variance
of the integral with f for a uniform distribution in the interval x ∈ [0, 1] to be

σ2
f =

1

N

NX
i=1

(f (xi )− 〈f 〉)2p(xi ),

and inserting the uniform distribution this yields

σ2
f =

1

N

NX
i=1

f (xi )
2 −

0@ 1

N

NX
i=1

f (xi )

1A2

,

or
σ2

f =
“

E [f 2]− (E [f ])2
”

.

which is nothing but a measure of the extent to which f deviates from its average over

the region of integration.
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But what do we gain by Monte Carlo Integration?

The trapezoidal rule carries a truncation error O(h2), with h the step length.

In general, quadrature rules such as Newton-Cotes have a truncation error which
goes like ∼ O(hk ), with k ≥ 1. Recalling that the step size is defined as
h = (b − a)/N, we have an error which goes like ∼ N−k .

Monte Carlo integration is more efficient in higher dimensions. Assume that our
integration volume is a hypercube with side L and dimension d . This cube
contains hence N = (L/h)d points and therefore the error in the result scales as
N−k/d for the traditional methods.

The error in the Monte carlo integration is however independent of d and scales
as σ ∼ 1/

√
N, always!

Comparing this with traditional methods, shows that Monte Carlo integration is
more efficient than an order-k algorithm when d > 2k
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Why Monte Carlo Integration?

An example from quantum mechanics: most problems of interest in e.g., atomic,
molecular, nuclear and solid state physics consist of a large number of interacting
electrons and ions or nucleons. The total number of particles N is usually sufficiently
large that an exact solution cannot be found. Typically, the expectation value for a
chosen hamiltonian for a system of N particles is

〈H〉 =R
dR1dR2 . . . dRNΨ∗(R1, R2, . . . , RN)H(R1, R2, . . . , RN)Ψ(R1, R2, . . . , RN)R

dR1dR2 . . . dRNΨ∗(R1, R2, . . . , RN)Ψ(R1, R2, . . . , RN)
,

an in general intractable problem.

This integral is actually the starting point in a Variational Monte Carlo calculation.

Gaussian quadrature: Forget it! given 10 particles and 10 mesh points for each

degree of freedom and an ideal 1 Tflops machine (all operations take the same time),

how long will it ta ke to compute the above integral? Lifetime of the universe

T ≈ 4.7× 1017s.
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The Dimensionality Curse

As an example from the nuclear many-body problem, we have Schrödinger’s equation
as a differential equation

ĤΨ(r1, .., rA, α1, .., αA) = EΨ(r1, .., rA, α1, .., αA)

where
r1, .., rA,

are the coordinates and
α1, .., αA,

are sets of relevant quantum numbers such as spin and isospin for a system of A

nucleons (A = N + Z , N being the number of neutrons and Z the number of protons).
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More on Dimensionality

There are

2A ×
„

A
Z

«
coupled second-order differential equations in 3A dimensions.

For a nucleus like 10Be this number is 215040. This is a truely challenging many-body

problem.
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Another classic: Radioactive Decay

Assume that a the time t = 0 we have N(0) nuclei of type X which can decay
radioactively. At a time t > 0 we are left with N(t) nuclei. With a transition probability ω,
which expresses the probability that the system will make a transition to another state
during a time step of one second, we have the following first-order differential equation

dN(t) = −ωN(t)dt ,

whose solution is
N(t) = N(0)e−ωt ,

where we have defined the mean lifetime τ of X as

τ =
1

ω
.
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Radioactive Decay

Probability for a decay of a particle during a time step ∆t is

∆N(t)

N(t)∆t
= −λ

λ is inversely proportional to the lifetime

Choose the number of particles N(t = 0) = N0.

Make a loop over the number of time steps, with maximum time bigger than the
number of particles N0

At every time step there is a probability λ for decay. Compare this probability with
a random number x .

If x ≤ λ, reduce the number of particles with one i.e., N = N − 1. If not, keep the
same number of particles till the next time step.

Increase by one the time step (the external loop)
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Radioactive Decay

idum=-1; // initialise random number generator
// loop over monte carlo cycles
// One monte carlo loop is one sample
for (cycles = 1; cycles <= number_cycles; cycles++){

n_unstable = initial_n_particles;
// accumulate the number of particles per time step per trial
ncumulative[0] += initial_n_particles;
// loop over each time step
for (time=1; time <= max_time; time++){

// for each time step, we check each particle
particle_limit = n_unstable;
for ( np = 1; np <= particle_limit; np++) {

if( ran0(&idum) <= decay_probability) {
n_unstable=n_unstable-1;

}
} // end of loop over particles
ncumulative[time] += n_unstable;

} // end of loop over time steps
} // end of loop over MC trials

} // end mc_sampling function
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The MC Philosophy in a Nutshell

Choose the number of Monte Carlo samples N. Think of every sample as an
experiment. Make a loop over N. These samples are often called Monte Carlo
cycles or just samples.

Within one experiment you may study a given physical system, say the alpha
decay of 100 nuclei every day.

You need a sampling rule. For this decay you choose a random variable from the
uniform distribution with xi in the interval xi ∈ [0, 1] by calling a random number
generator. This number is compared with your decay probability. If smaller
diminish the number of particles, if bigger keep the number. This is the
sampling rule

Every experiment has its mean and variance. Find the contribution to the
variance and the mean value for every loop contribution.

After N samplings, compute the final mean value, variance, standard deviation
and possibly the covariance.
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Probability Distribution Functions PDF

Discrete PDF continuous PDF
Domain {x1, x2, x3, . . . , xN} [a, b]
probability p(xi ) p(x)dx
Cumulative Pi =

Pi
l=1 p(xl ) P(x) =

R x
a p(t)dt

Positivity 0 ≤ p(xi ) ≤ 1 p(x) ≥ 0
Positivity 0 ≤ Pi ≤ 1 0 ≤ P(x) ≤ 1
Monotonuous Pi ≥ Pj if xi ≥ xj P(xi ) ≥ P(xj ) if xi ≥ xj
Normalization PN = 1 P(b) = 1

As an example, consider the tossing of two dice, which yields the following possible
values

[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

These values are called the domain. To this domain we have the corresponding
probabilities

[1/36, 2/36/3/36, 4/36, 5/36, 6/36, 5/36, 4/36, 3/36, 2/36, 1/36].
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Expectation Values

Discrete PDF

E [xk ] = 〈xk 〉 =
1
N

N∑
i=1

xk
i p(xi),

provided that the sums (or integrals)
∑N

i=1 p(xi) converge
absolutely (viz ,

∑N
i=1 |p(xi)| converges)

Continuous PDF

E [xk ] = 〈xk 〉 =

∫ b

a
xk p(x)dx ,

Function f (x)

E [f k ] = 〈f k 〉 =

∫ b

a
f k p(x)dx ,

Variance
σ2

f = E [f 2] − (E [f ])2 = 〈f 2〉 − 〈f 〉2
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Uniform Distribution

The uniform PDF

p(x) =
1

b − a
Θ(x − a)Θ(b − x).

It gives for a = 0, b = 1 p(x) = 1 for x ∈ [0, 1] and zero else. It forms the basis for all

generations of random numbers.
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Exponential Distribution

The exponential PDF
p(x) = αe−αx ,

yielding probabilities different from zero in the interval [0,∞) and with mean value

µ =

Z ∞

0
xp(x)dx =

Z ∞

0
xαe−αx dx =

1

α

and variance

σ2 =

Z ∞

0
x2p(x)dx − µ2 =

1

α2
.
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Normal Distribution

The Normal PDF

p(x) =
1

b
√

2π
exp

„
−

(x − a)2

2b2

«
with probabilities different from zero in the interval (−∞,∞). The integralR∞
−∞ exp

`
−(x2

´
dx appears in many calculations, its value is

√
π, a result we will need

when we compute the mean value and the variance. The mean value is

µ =

Z ∞

0
xp(x)dx =

1

b
√

2π

Z ∞

−∞
x exp

„
−

(x − a)2

2b2

«
dx ,

which becomes with a suitable change of variables

µ =
1

b
√

2π

Z ∞

−∞
b
√

2(a + b
√

2y) exp−y2dy = a.
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Normal Distribution, further Properties

Similarly, the variance becomes

σ2 =
1

b
√

2π

Z ∞

−∞
(x − µ)2 exp

„
−

(x − a)2

2b2

«
dx ,

and inserting the mean value and performing a variable change we obtain

σ2 =
1

b
√

2π

Z ∞

−∞
b
√

2(b
√

2y)2 exp
“
−y2

”
dy =

2b2
√

π

Z ∞

−∞
y2 exp

“
−y2

”
dy ,

and performing a final integration by parts we obtain the well-known result σ2 = b2.
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Normal Distribution, further Properties

It is useful to introduce the standard normal distribution as well, defined by µ = a = 0,
viz. a distribution centered around zero and with a variance σ2 = 1, leading to

p(x) =
1

√
2π

exp
„
−

x2

2

«
.

The exponential and uniform distributions have simple cumulative functions, whereas
the normal distribution does not, being proportional to the so-called error function
erf (x), given by

P(x) = .
1

√
2π

Z x

−∞
exp

„
−

t2

2

«
dt ,

which is difficult to evaluate in a quick way. Later we will present an algorithm by Box

and Mueller which allows us to compute the cumulative distribution using random

variables sampled from the uniform distribution.

First National Winter School in eScience Lecture I, January 28 2007



Introduction PDF MC Integration

Binomial Distribution

The binomial distribution

p(x) =

„
n
x

«
yx (1− y)n−x x = 0, 1, . . . , n,

where y is the probability for a specific event, such as the tossing of a coin or moving
left or right in case of a random walker. Note that x is a discrete stochastic variable.
The sequence of binomial trials is characterized by the following definitions

Every experiment is thought to consist of N independent trials.

In every independent trial one registers if a specific situation happens or not,
such as the jump to the left or right of a random walker.

The probability for every outcome in a single trial has the same value, for
example the outcome of tossing a coin is always 1/2.

In Lecture 3 we will show that the probability distribution for a random walker

approaches the binomial distribution.
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Properties of the Binomial Distribution

In order to compute the mean and variance we need to recall Newton’s binomial
formula

(a + b)m =
mX

n=0

„
m
n

«
anbm−n,

which can be used to show that

nX
x=0

„
n
x

«
yx (1− y)n−x = (y + 1− y)n = 1,

the PDF is normalized to one.
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Properties of the Binomial Distribution

The mean value is

µ =
nX

x=0

x
„

n
x

«
yx (1− y)n−x =

nX
x=0

x
n!

x!(n − x)!
yx (1− y)n−x ,

resulting in

µ =
nX

x=0

x
(n − 1)!

(x − 1)!(n − 1− (x − 1))!
yx−1(1− y)n−1−(x−1),

which we rewrite as

µ = ny
nX

ν=0

„
n − 1

ν

«
yν(1− y)n−1−ν = ny(y + 1− y)n−1 = ny .

The variance is slightly trickier to get. Exercise: show that it reads σ2 = ny(1− y).
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Poisson Distribution

Another important distribution with discrete stochastic variables x is the Poisson model,
which resembles the exponential distribution and reads

p(x) =
λx

x!
e−λ x = 0, 1, . . . , ; λ > 0.

In this case both the mean value and the variance are easier to calculate,

µ =
∞X

x=0

x
λx

x!
e−λ = λe−λ

∞X
x=1

λx−1

(x − 1)!
= λ,

and the variance is σ2 = λ. Example of applications of the Poisson distribution is the
counting of the number of α-particles emitted from a radioactive source in a given time
interval. In the limit of n →∞ and for small probabilities y , the binomial distribution
approaches the Poisson distribution. Setting λ = ny , with y the probability for an event
in the binomial distribution we can show that

lim
n→∞

„
n
x

«
yx (1− y)n−x e−λ

∞X
x=1

=
λx

x!
e−λ,
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Multivariable Expectation Values

Let us recapitulate some of the above concepts using a discrete PDF (which is what we
end up doing anyway on a computer). The mean value of a random variable X with
range x1, x2, . . . , N is

〈x〉 = µ =
1

N

NX
i=1

xi p(xi ),

and the variance is

σ2 =
1

N

NX
i=1

(xi − 〈x〉)2p(xi ) =
1

N

NX
i=1

〈(xi − µi )
2〉.

Assume now that we have two independent sets of measurements X1 and X2 with

corresponding mean and variance µ1 and µ2 and σ2
X1

and σ2
X2

.
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Multivariable Expectation Values

It follows that if we define the new stochastic variable

Y = X1 + X2,

we have
µY = µ1 + µ2,

and

σ2
Y = 〈(Y − µY )2〉 = 〈(X1 − µ1)

2〉+ 〈(X2 − µ2)
2〉+ 2〈(X1 − µ1)(X2 − µ2)〉.
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It is useful to define the so-called covariance, given by

cov(X1, X2) = 〈(X1 − µ1)(X2 − µ2)〉

where we consider the averages µ1 and µ2 as the outcome of two separate
measurements. The covariance measures thus the degree of correlation between
variables. We can then rewrite the variance of Y as

σ2
Y =

2X
j=1

〈(Xj − µj )
2〉+ 2cov(X1, X2),

which in our notation becomes

σ2
Y = σ2

X1
+ σ2

X2
+ 2cov(X1, X2).

If X1 and X2 are two independent variables we can show that the covariance is zero,

but one cannot deduce from a zero covariance whether the variables are independent

or not. If our random variables which we generate are truely random numbers, then the

covariance should be zero.
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A way to measure the correlation between two sets of stochastic variables is the
so-called correlation function ρ(X1, X2) defined as

ρ(X1, X2) =
cov(X1, X2)q
〈σ2〉X1

〈σ2〉X2

.

Obviously, if the covariance is zero due to the fact that the variables are independent,
then the correlation is zero. This quantity is often called the correlation coefficient
between X1 and X2. We can extend this analysis to a set of stochastic variables
Y = (X1 + X2 + · · ·+ XN). We now assume that we have N different measurements of
the mean and variance of a given variable. Each measurement consists again of N
measurements, although we could have chosen the latter to be different from N. The
total mean value is defined as

〈µY 〉 =
NX

i=1

〈µi 〉.

The total variance is however now defined as

σ2
Y = 〈(Y − µY )2〉 =

NX
j=1

〈(Xj − µj )〉2 =
NX

j=1

σ2
Xj

+ 2
NX

j<k

〈(Xj − µj )〉〈(Xk − µk )〉,

or

σ2
Y =

NX
j=1

σ2
Xj

+ 2
NX

j<k

cov(Xj , Xk ).
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Covariance

If the variables are independent, the covariance is zero and the variance is reduced to

σ2
Y =

NX
j=1

σ2
Xj

,

and if we assume that all sets of measurements produce the same variance σ2, we
end up with

σ2
Y = Nσ2.

In Lecture 5 we will discuss a very important class of correlation functions (another
application of the covariance), the so-called time-correlation functions. This are
important quantities in our studies of equilibrium properties,

φ(t) =

Z
dt ′
ˆ
M(t ′)− 〈M〉

˜ ˆ
M(t ′ + t)− 〈M〉

˜
.

From Onsager regression hypothesis, we have that in the long time limit, the variables

M(t ′ + t) and M(t) eventually become uncorrelated from each other so that the time

correlation function becomes zero. The system has then reached its most likely state.
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Central Limit Theorem

Suppose we have a PDF p(x) from which we generate a series N of averages 〈xi 〉.
Each mean value 〈xi 〉 is viewed as the average of a specific measurement, e.g.,
throwing dice 100 times and then taking the average value, or producing a certain
amount of random numbers. For notational ease, we set 〈xi 〉 = xi in the discussion
which follows.
If we compute the mean z of N such mean values xi

z =
x1 + x2 + · · ·+ xN

N
,

the question we pose is which is the PDF of the new variable z.
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Central Limit Theorem

The probability of obtaining an average value z is the product of the probabilities of
obtaining arbitrary individual mean values xi , but with the constraint that the average is
z. We can express this through the following expression

p̃(z) =

Z
dx1p(x1)

Z
dx2p(x2) . . .

Z
dxNp(xN)δ(z −

x1 + x2 + · · ·+ xN

N
),

where the δ-function enbodies the constraint that the mean is z. All measurements that

lead to each individual xi are expected to be independent, which in turn means that we

can express p̃ as the product of individual p(xi ).
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Central Limit Theorem

If we use the integral expression for the δ-function

δ(z −
x1 + x2 + · · ·+ xN

N
) =

1

2π

Z ∞

−∞
dqe

“
iq(z− x1+x2+···+xN

N )
”
,

and inserting eiµq−iµq where µ is the mean value we arrive at

p̃(z) =
1

2π

Z ∞

−∞
dqe(iq(z−µ))

»Z ∞

−∞
dxp(x)e(iq(µ−x)/N)

–N

,

with the integral over x resulting inZ ∞

−∞
dxp(x) exp (iq(µ− x)/N) =

Z ∞

−∞
dxp(x)

»
1 +

iq(µ− x)

N
−

q2(µ− x)2

2N2
+ . . .

–
.
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Central Limit Theorem

The second term on the rhs disappears since this is just the mean and employing the
definition of σ2 we haveZ ∞

−∞
dxp(x)e(iq(µ−x)/N) = 1−

q2σ2

2N2
+ . . . ,

resulting in

»Z ∞

−∞
dxp(x) exp (iq(µ− x)/N)

–N

≈
»

1−
q2σ2

2N2
+ . . .

–N

,

and in the limit N →∞ we obtain

p̃(z) =
1

√
2π(σ/

√
N)

exp

 
−

(z − µ)2

2(σ/
√

N)2

!
,

which is the normal distribution with variance σ2
N = σ2/N, where σ is the variance of

the PDF p(x) and µ is also the mean of the PDF p(x).

First National Winter School in eScience Lecture I, January 28 2007



Introduction PDF MC Integration

Central Limit Theorem

Thus, the central limit theorem states that the PDF p̃(z) of the average of N random
values corresponding to a PDF p(x) is a normal distribution whose mean is the mean
value of the PDF p(x) and whose variance is the variance of the PDF p(x) divided by
N, the number of values used to compute z.
The theorem is satisfied by a large class of PDFs. Note however that for a finite N, it is
not always possible to find a closed expression for p̃(x). The central limit theorem
leads then to the well-known expression for the standard deviation, given by

σN =
σ
√

N
.

The latter is true only if the average value is known exactly. This is obtained in the limit

N →∞ only.

First National Winter School in eScience Lecture I, January 28 2007



Introduction PDF MC Integration

Monte Carlo Integration

With the uniform distribution p(x) = 1 for x ∈ [0, 1] and zero else

I =

Z 1

0
f (x)dx ≈

1

N

NX
i=1

f (xi ),

I =

Z 1

0
f (x)dx ≈ E [f ] = 〈f 〉.

σ2
f =

1

N

NX
i=1

f (xi )
2 −

0@ 1

N

NX
i=1

f (xi )

1A2

,

or
σ2

f = E [f 2]− (E [f ])2 =
“
〈f 2〉 − 〈f 〉2

”
.
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Brute Force Algorithm for Monte Carlo Integration

Choose the number of Monte Carlo samples N.

Make a loop over N and for every step generate a random number xi in the
interval xi ∈ [0, 1] by calling a random number generator.

Use this number to compute f (xi ).

Find the contribution to the variance and the mean value for every loop
contribution.

After N samplings, compute the final mean value and the standard deviation
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Brute Force Integration

// crude mc function to calculate pi
int i, n;
long idum;
double crude_mc, x, sum_sigma, fx, variance;
cout << "Read in the number of Monte-Carlo samples" << endl;
cin >> n;
crude_mc = sum_sigma=0. ; idum=-1 ;

// evaluate the integral with the a crude Monte-Carlo method
for ( i = 1; i <= n; i++){

x=ran0(&idum);
fx=func(x);
crude_mc += fx;
sum_sigma += fx*fx;

}
crude_mc = crude_mc/((double) n );
sum_sigma = sum_sigma/((double) n );
variance=sum_sigma-crude_mc*crude_mc;

Code at http://folk.uio.no/mhjensen/fys3150/2005/programs/

chapter8/example1.cpp .

First National Winter School in eScience Lecture I, January 28 2007

http://folk.uio.no/mhjensen/fys3150/2005/programs/chapter8/example1.cpp
http://folk.uio.no/mhjensen/fys3150/2005/programs/chapter8/example1.cpp


Introduction PDF MC Integration

Or: another Brute Force Integration

// crude mc function to calculate pi
int main()
{

const int n = 1000000;
double x, fx, pi, invers_period, pi2;
int i;
invers_period = 1./RAND_MAX;
srand(time(NULL));
pi = pi2 = 0.;
for (i=0; i<n;i++)

{
x = double(rand())*invers_period;
fx = 4./(1+x*x);
pi += fx;
pi2 += fx*fx;

}
pi /= n; pi2 = pi2/n - pi*pi;
cout << "pi=" << pi << " sigmaˆ2=" << pi2 << endl;
return 0;

}
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Brute Force Integration

Note the call to a function which generates random numbers according to the uniform
distribution

long idum;
idum=-1 ;
.....
x=ran0(&idum);
....

or

...
invers_period = 1./RAND_MAX;
srand(time(NULL));
...
x = double(rand())*invers_period;
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Results of Brute Force Integration

N I σN
10 3.10263E+00 3.98802E-01

100 3.02933E+00 4.04822E-01
1000 3.13395E+00 4.22881E-01

10000 3.14195E+00 4.11195E-01
100000 3.14003E+00 4.14114E-01

1000000 3.14213E+00 4.13838E-01
10000000 3.14177E+00 4.13523E-01

109 3.14162E+00 4.13581E-01
We note that as N increases, the integral itself never reaches more than an agreement

to the fourth or fifth digit. The variance also oscillates around its exact value

4.13581E − 01. Note well that the variance need not be zero but one can, with

appropriate redefinitions of the integral be made smaller. A smaller variance yields also

a smaller standard deviation.

First National Winter School in eScience Lecture I, January 28 2007



Introduction PDF MC Integration

Acceptance-Rejection Method

This is a rather simple and appealing method after von Neumann. Assume that we are
looking at an interval x ∈ [a, b], this being the domain of the PDF p(x). Suppose also
that the largest value our distribution function takes in this interval is M, that is

p(x) ≤ M x ∈ [a, b].

Then we generate a random number x from the uniform distribution for x ∈ [a, b] and a
corresponding number s for the uniform distribution between [0, M]. If

p(x) ≥ s,

we accept the new value of x , else we generate again two new random numbers x and
s and perform the test in the latter equation again.
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Acceptance-Rejection Method

As an example, consider the evaluation of the integral

I =

Z 3

0
exp (x)dx .

Obviously to derive it analytically is much easier, however the integrand could pose

some more difficult challenges. The aim here is simply to show how to implent the

acceptance-rejection algorithm. The integral is the area below the curve

f (x) = exp (x). If we uniformly fill the rectangle spanned by x ∈ [0, 3] and

y ∈ [0, exp (3)], the fraction below the curve obatained from a uniform distribution, and

multiplied by the area of the rectangle, should approximate the chosen integral. It is

rather easy to implement this numerically, as shown in the following code.
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Simple Plot of the Accept-Reject Method
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Acceptance-Rejection Method

// Loop over Monte Carlo trials n
integral =0.;
for ( int i = 1; i <= n; i++){

// Finds a random value for x in the interval [0,3]
x = 3*ran0(&idum);

// Finds y-value between [0,exp(3)]
y = exp(3.0)*ran0(&idum);

// if the value of y at exp(x) is below the curve, we accept
if ( y < exp(x)) s = s+ 1.0;

// The integral is area enclosed below the line f(x)=exp(x)
}

// Then we multiply with the area of the rectangle and
// divide by the number of cycles

Integral = 3.*exp(3.)*s/n
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Transformation of Variables

The starting point is always the uniform distribution

p(x)dx =


dx 0 ≤ x ≤ 1
0 else

with p(x) = 1 and satisfying Z ∞

−∞
p(x)dx = 1.

All random number generators provided in the program library generate numbers in
this domain.
When we attempt a transformation to a new variable x → y we have to conserve the
probability

p(y)dy = p(x)dx ,

which for the uniform distribution implies

p(y)dy = dx .
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Transformation of Variables

Let us assume that p(y) is a PDF different from the uniform PDF p(x) = 1 with
x ∈ [0, 1]. If we integrate the last expression we arrive at

x(y) =

Z y

0
p(y ′)dy ′,

which is nothing but the cumulative distribution of p(y), i.e.,

x(y) = P(y) =

Z y

0
p(y ′)dy ′.

This is an important result which has consequences for eventual improvements over

the brute force Monte Carlo.
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Example 1, a general Uniform Distribution

Suppose we have the general uniform distribution

p(y)dy =

(
dy

b−a a ≤ y ≤ b
0 else

If we wish to relate this distribution to the one in the interval x ∈ [0, 1] we have

p(y)dy =
dy

b − a
= dx ,

and integrating we obtain the cumulative function

x(y) =

Z y

a

dy ′

b − a
,

yielding
y = a + (b − a)x ,

a well-known result!
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Example 2, from Uniform to Exponential

Assume that
p(y) = e−y ,

which is the exponential distribution, important for the analysis of e.g., radioactive
decay. Again, p(x) is given by the uniform distribution with x ∈ [0, 1], and with the
assumption that the probability is conserved we have

p(y)dy = e−y dy = dx ,

which yields after integration

x(y) = P(y) =

Z y

0
exp (−y ′)dy ′ = 1− exp (−y),

or
y(x) = −ln(1− x).

This gives us the new random variable y in the domain y ∈ [0,∞) determined through
the random variable x ∈ [0, 1] generated by our favorite random generator.
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Example 2, from Uniform to Exponential

This means that if we can factor out exp (−y) from an integrand we may have

I =

Z ∞

0
F (y)dy =

Z ∞

0
exp (−y)G(y)dy

which we rewrite as

Z ∞

0
exp (−y)G(y)dy =

Z ∞

0

dx

dy
G(y)dy ≈

1

N

NX
i=1

G(y(xi )),

where xi is a random number in the interval [0,1].

Note that in practical implementations, our random number generators for the uniform

distribution never return exactly 0 or 1, but we we may come very close. We should

thus in principle set x ∈ (0, 1).
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Example 2, from Uniform to Exponential

The algorithm is rather simple. In the function which sets up the integral, we simply
need the random number generator for the uniform distribution in order to obtain
numbers in the interval [0,1]. We obtain y by the taking the logarithm of (1− x). Our
calling function which sets up the new random variable y may then include statements
like

.....
idum=-1;
x=ran0(&idum);
y=-log(1.-x);
.....
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Example 3
Another function which provides an example for a PDF is

p(y)dy =
dy

(a + by)n
,

with n > 1. It is normalizable, positive definite, analytically integrable and the integral is
invertible, allowing thereby the expression of a new variable in terms of the old one.
The integral Z ∞

0

dy

(a + by)n
=

1

(n − 1)ban−1
,

gives

p(y)dy =
(n − 1)ban−1

(a + by)n
dy ,

which in turn gives the cumulative function

x(y) = P(y) =

Z y

0

(n − 1)ban−1

(a + bx)n
dy ′ =,

resulting in

y =
a

b

“
(1− x)−1/(n−1) − 1

”
.
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Example 4, from Uniform to Normal

For the normal distribution, expressed here as

g(x , y) = exp (−(x2 + y2)/2)dxdy .

it is rather difficult to find an inverse since the cumulative distribution is given by the
error function erf (x).
If we however switch to polar coordinates, we have for x and y

r =
“

x2 + y2
”1/2

θ = tan−1 x

y
,

resulting in
g(r , θ) = r exp (−r2/2)drdθ,

where the angle θ could be given by a uniform distribution in the region [0, 2π].

Following example 1 above, this implies simply multiplying random numbers x ∈ [0, 1]

by 2π.
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Example 4, from Uniform to Normal
The variable r , defined for r ∈ [0,∞) needs to be related to to random numbers
x ′ ∈ [0, 1]. To achieve that, we introduce a new variable

u =
1

2
r2,

and define a PDF
exp (−u)du,

with u ∈ [0,∞). Using the results from example 2, we have that

u = −ln(1− x ′),

where x ′ is a random number generated for x ′ ∈ [0, 1]. With

x = rcos(θ) =
√

2ucos(θ),

and
y = rsin(θ) =

√
2usin(θ),

we can obtain new random numbers x , y through

x =
p
−2ln(1− x ′)cos(θ),

and
y =

p
−2ln(1− x ′)sin(θ),

with x ′ ∈ [0, 1] and θ ∈ 2π[0, 1].
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Example 4, from Uniform to Normal

A function which yields such random numbers for the normal distribution would include
statements like

.....
idum=-1;
radius=sqrt(-2*ln(1.-ran0(idum)));
theta=2*pi*ran0(idum);
x=radius*cos(theta);
y=radius*sin(theta);
.....
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Box-Mueller Method for Normal Deviates

// random numbers with gaussian distribution
double gaussian_deviate(long * idum)
{

static int iset = 0;
static double gset;
double fac, rsq, v1, v2;
if ( idum < 0) iset =0;
if (iset == 0) {

do {
v1 = 2.*ran0(idum) -1.0;
v2 = 2.*ran0(idum) -1.0;
rsq = v1*v1+v2*v2;

} while (rsq >= 1.0 || rsq == 0.);
fac = sqrt(-2.*log(rsq)/rsq);
gset = v1*fac;
iset = 1;
return v2*fac;

} else {
iset =0;
return gset;

}
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Importance Sampling

With the aid of the above variable transformations we address now one of the most
widely used approaches to Monte Carlo integration, namely importance sampling.
Let us assume that p(y) is a PDF whose behavior resembles that of a function F
defined in a certain interval [a, b]. The normalization condition isZ b

a
p(y)dy = 1.

We can rewrite our integral as

I =

Z b

a
F (y)dy =

Z b

a
p(y)

F (y)

p(y)
dy .
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Importance Sampling

Since random numbers are generated for the uniform distribution p(x) with x ∈ [0, 1],
we need to perform a change of variables x → y through

x(y) =

Z y

a
p(y ′)dy ′,

where we used
p(x)dx = dx = p(y)dy .

If we can invert x(y), we find y(x) as well.
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Importance Sampling

With this change of variables we can express the integral of Eq. (61) as

I =

Z b

a
p(y)

F (y)

p(y)
dy =

Z b

a

F (y(x))

p(y(x))
dx ,

meaning that a Monte Carlo evalutaion of the above integral gives

Z b

a

F (y(x))

p(y(x))
dx =

1

N

NX
i=1

F (y(xi ))

p(y(xi ))
.

The advantage of such a change of variables in case p(y) follows closely F is that the
integrand becomes smooth and we can sample over relevant values for the integrand.
It is however not trivial to find such a function p. The conditions on p which allow us to
perform these transformations are

1 p is normalizable and positive definite,

2 it is analytically integrable and

3 the integral is invertible, allowing us thereby to express a new variable in terms of
the old one.
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Importance Sampling
The algorithm for this procedure is

Use the uniform distribution to find the random variable y in the interval [0,1].
p(x) is a user provided PDF.

Evaluate thereafter

I =

Z b

a
F (x)dx =

Z b

a
p(x)

F (x)

p(x)
dx ,

by rewriting Z b

a
p(x)

F (x)

p(x)
dx =

Z b

a

F (x(y))

p(x(y))
dy ,

since
dy

dx
= p(x).

Perform then a Monte Carlo sampling forZ b

a

F (x(y))

p(x(y))
dy ,≈

1

N

NX
i=1

F (x(yi ))

p(x(yi ))
,

with yi ∈ [0, 1],

Evaluate the variance
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Demonstration of Importance Sampling

I =

Z 1

0
F (x)dx =

Z 1

0

1

1 + x2
dx =

π

4
.

We choose the following PDF (which follows closely the function to integrate)

p(x) =
1

3
(4− 2x)

Z 1

0
p(x)dx = 1,

resulting
F (0)

p(0)
=

F (1)

p(1)
=

3

4
.

Check that it fullfils the requirements of a PDF. We perform then the change of
variables (via the Cumulative function)

y(x) =

Z x

0
p(x ′)dx ′ =

1

3
x (4− x) ,

or
x = 2− (4− 3y)1/2

We have that when y = 0 then x = 0 and when y = 1 we have x = 1.

First National Winter School in eScience Lecture I, January 28 2007



Introduction PDF MC Integration

Simple Code

// evaluate the integral with importance sampling
for ( int i = 1; i <= n; i++){

x = ran0(&idum); // random numbers in [0,1]
y = 2 - sqrt(4-3*x); // new random numbers
fy=3*func(y)/(4-2*y); // weighted function
int_mc += fy;
sum_sigma += fy*fy;

}
int_mc = int_mc/((double) n );
sum_sigma = sum_sigma/((double) n );
variance=(sum_sigma-int_mc*int_mc);

Code at http://folk.uio.no/mhjensen/fys3150/2005/programs/

chapter8/example2.cpp .
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Test Runs and Comparison with Brute Force for
π = 3.14159

The suffix cr stands for the brute force approach while is stands for the use of
importance sampling. All calculations use ran0 as function to generate the uniform
distribution.

N Icr σcr Iis σis
10000 3.13395E+00 4.22881E-01 3.14163E+00 6.49921E-03

100000 3.14195E+00 4.11195E-01 3.14163E+00 6.36837E-03
1000000 3.14003E+00 4.14114E-01 3.14128E+00 6.39217E-03

10000000 3.14213E+00 4.13838E-01 3.14160E+00 6.40784E-03
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Multidimensional Integrals

When we deal with multidimensional integrals of the form

I =

Z 1

0
dx1

Z 1

0
dx2 . . .

Z 1

0
dxd g(x1, . . . , xd ),

with xi defined in the interval [ai , bi ] we would typically need a transformation of
variables of the form

xi = ai + (bi − ai )ti ,

if we were to use the uniform distribution on the interval [0, 1]. In this case, we need a
Jacobi determinant

dY
i=1

(bi − ai ),

and to convert the function g(x1, . . . , xd ) to

g(x1, . . . , xd ) → g(a1 + (b1 − a1)t1, . . . , ad + (bd − ad )td ).
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Example: 6-dimensional Integral

As an example, consider the following six-dimensional integralZ ∞

−∞
dxdy g(x, y),

where
g(x, y) = exp (−x2 − y2 − (x − y)2/2),

with d = 6.
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Example: 6-dimensional Integral

We can solve this integral by employing our brute force scheme, or using importance
sampling and random variables distributed according to a gaussian PDF. For the latter,
if we set the mean value µ = 0 and the standard deviation σ = 1/

√
2, we have

1
√

π
exp (−x2),

and through

π3
Z 6Y

i=1

„
1
√

π
exp (−x2

i )

«
exp (−(x − y)2/2)dx1. . . . dx6,

we can rewrite our integral as

Z
f (x1, . . . , xd )F (x1, . . . , xd )

6Y
i=1

dxi ,

where f is the gaussian distribution.
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Brute Force I

.....
// evaluate the integral without importance sampling
// Loop over Monte Carlo Cycles

for ( int i = 1; i <= n; i++){
// x[] contains the random numbers for all dimensions

for (int j = 0; j< 6; j++) {
x[j]=-length+2*length*ran0(&idum);

}
fx=brute_force_MC(x);
int_mc += fx;
sum_sigma += fx*fx;

}
int_mc = int_mc/((double) n );
sum_sigma = sum_sigma/((double) n );
variance=sum_sigma-int_mc*int_mc;

......
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Brute Force II

double brute_force_MC(double *x)
{

double a = 1.; double b = 0.5;
// evaluate the different terms of the exponential

double xx=x[0]*x[0]+x[1]*x[1]+x[2]*x[2];
double yy=x[3]*x[3]+x[4]*x[4]+x[5]*x[5];
double xy=pow((x[0]-x[3]),2)+pow((x[1]-x[4]),2)+pow((x[2]-x[5]),2);
return exp(-a*xx-a*yy-b*xy);

Full code at http://folk.uio.no/mhjensen/fys3150/2005/programs/

chapter8/example3.cpp .
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Importance Sampling I

..........
// evaluate the integral with importance sampling

for ( int i = 1; i <= n; i++){
// x[] contains the random numbers for all dimensions

for (int j = 0; j < 6; j++) {
x[j] = gaussian_deviate(&idum)*sqrt2;

}
fx=gaussian_MC(x);
int_mc += fx;
sum_sigma += fx*fx;

}
int_mc = int_mc/((double) n );
sum_sigma = sum_sigma/((double) n );
variance=sum_sigma-int_mc*int_mc;

.............
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Importance Sampling II

// this function defines the integrand to integrate

double gaussian_MC(double *x)
{

double a = 0.5;
// evaluate the different terms of the exponential

double xy=pow((x[0]-x[3]),2)+pow((x[1]-x[4]),2)+pow((x[2]-x[5]),2);
return exp(-a*xy);

} // end function for the integrand

Full code at http://folk.uio.no/mhjensen/fys3150/2005/programs/

chapter8/example4.cpp .
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Test Runs for six-dimensional Integral

Results for as function of number of Monte Carlo samples N. The exact answer is
I ≈ 10.9626 for the integral. The suffix cr stands for the brute force approach while gd
stands for the use of a Gaussian distribution function. All calculations use ran0 as
function to generate the uniform distribution.

N Icr Igd
10000 1.15247E+01 1.09128E+01

100000 1.29650E+01 1.09522E+01
1000000 1.18226E+01 1.09673E+01

10000000 1.04925E+01 1.09612E+01
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Going Parallel with MPI

Task parallelism the work of a global problem can be divided
into a number of independent tasks, which rarely need to
synchronize. Monte Carlo simulation is one example. It is
almost embarrassingly trivial to parallelize Monte Carlo codes.
MPI is a message-passing library where all the routines have
corresponding C/C++-binding

MPI_Command_name

and Fortran-binding (routine names are in uppercase, but can
also be in lower case)

MPI_COMMAND_NAME
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Computing the 6-dimensional Integral in Parallel

#include "mpi.h"
#include <stdio.h>
int main (int nargs, char* args)
{
Declarations ....

MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Comm_rank (MPI_COMM_WORLD, &iam);
....
no_intervalls = mcs/size;
myloop_begin = iam*no_intervalls + 1;
myloop_end = (iam+1)*no_intervalls;
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Computing the 6-dimensional Integral in Parallel

for ( int i = myloop_begin; i <= myloop_end; i++){
// x[] contains the random numbers for all dimensions

for (int j = 0; j < 6; j++) {
x[j] = gaussian_deviate(&idum)*sqrt2;

}
fx=gaussian_MC(x);
average[0] += fx;
average[1] += fx*fx;

}
MPI_reduce(average, total_average, 2, MPI_DOUBLE,

MPI_SUM, 0, MPI_COMM_WORLD)
//print results
MPI_Finalize ();

Full code at http://folk.uio.no/mhjensen/fys3150/
2005/programs/chapter8/example6.cpp .
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Exercise

(a) Calculate the integral

I =

Z 1

0
e−x2

dx ,

using brute force Monte Carlo with p(x) = 1 and importance sampling with
p(x) = ae−x where a is a constant.

(b) Calculate the integral

I =

Z π

0

1

x2 + cos2(x)
dx ,

with p(x) = ae−x where a is a constant. Determine the value of a which
minimizes the variance.

(c) Try to parallelize the code as well.
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