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Random Numbers Markov and Diffusion Metropolis

’Iacta Alea est’, the die is cast!

Plan for the lectures

1 January 28: Introduction to Monte Carlo methods,
probability distributions and Monte Carlo Integration.

2 January 29: Random numbers, Markov chains, diffusion
and the Metropolis algorithm.

3 January 30: Applications in sociology, simulations of phase
transitions in physics and quantum physics.

4 All material taken from my text on Computational Physics,
see http://www.uio.no/studier/emner/matnat/
fys/FYS3150/h06/undervisningsmateriale/
LectureNotes/ .
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Random Numbers Markov and Diffusion Metropolis

Reminder from yesterday: What is Monte Carlo?

1 Monte Carlo methods are nowadays widely used, from the
integration of multi-dimensional integrals to solving ab initio
problems in chemistry, physics, medicine, biology, or even
Dow-Jones forecasting. Computational finance is one of
the novel fields where Monte Carlo methods have found a
new field of applications, with financial engineering as an
emerging field.

2 Numerical methods that are known as Monte Carlo
methods can be loosely described as statistical simulation
methods, where statistical simulation is defined in quite
general terms to be any method that utilizes sequences of
random numbers to perform the simulation.
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Random Numbers Markov and Diffusion Metropolis

Reminder from yesterday: Monte Carlo Keywords

Consider it is a numerical experiment

Be able to generate random variables following a given
probability distribution function (PDF). The starting point for
any calculation is the derivation of random numbers based
on the uniform distribution.

Sampling rule for accepting a move

Compute standard deviation and other expectation values

Techniques for improving errors
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Random Numbers Markov and Diffusion Metropolis

Exercises for Lecture I

(a) Calculate the integral

I =

Z 1

0
e−x2

dx ,

using brute force Monte Carlo with p(x) = 1 and importance sampling with
p(x) = ae−x where a is a constant.

(b) Calculate the integral

I =

Z π

0

1

x2 + cos2(x)
dx ,

with p(x) = ae−x where a is a constant. Determine the value of a which
minimizes the variance.

(c) Try to parallelize the last code as well.
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Random Numbers
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Random Numbers

The codes for the random number generators ran0, ran1,
ran2 and ran3 discussed here are at http://www.uio.
no/studier/emner/matnat/fys/FYS3150/h06/
undervisningsmateriale/Programs/ and go to
either the Fortran95 or C++ libraries (see also version with
Blitz++).

The random number generators ran0, ran1, ran2 and ran3,
taken from the text Numerical Recipes, see
http://www.nr.com .

For parallel random number generators, there is the
so-called Scalable Parallel Random Number Generators
Library (SPRNG) for ASCI Monte Carlo Computations, see
http://sprng.cs.fsu.edu/ for software and detailed
information.
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Random Numbers Markov and Diffusion Metropolis

Random Numbers

Most used are so-called ’Linear congruential’

Ni = (aNi−1 + c)MOD(M),

and to find a number in x ∈ [0, 1]
xi = Ni/M

M is called the period and should be as big as possible. The start value is N0 and is
called the seed.

The random variables should result in the uniform distribution

No correlations between numbers (zero covariance)

As big as possible period M

Fast algo
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Random Numbers Markov and Diffusion Metropolis

Random Numbers

The problem with such generators is that their outputs are periodic; they will start to
repeat themselves with a period that is at most M. If however the parameters a and c
are badly chosen, the period may be even shorter.
Consider the following example

Ni = (6Ni−1 + 7)MOD(5),

with a seed N0 = 2. This generator produces the sequence
4, 1, 3, 0, 2, 4, 1, 3, 0, 2, ... . . . , i.e., a sequence with period 5. However, increasing M
may not guarantee a larger period as the following example shows

Ni = (27Ni−1 + 11)MOD(54),

which still, with N0 = 2, results in 11, 38, 11, 38, 11, 38, . . . , a period of just 2.
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Random Numbers Markov and Diffusion Metropolis

Random Numbers

Typical periods for the random generators provided in the program library are of the
order of ∼ 109 (ran0) or larger (ran1, ran2 and ran3). Other random number
generators which have become increasingly popular are so-called shift-register
generators. In these generators each successive number depends on many preceding
values (rather than the last values as in the linear congruential generator). For
example, you could make a shift register generator whose l th number is the sum of the
l − i th and l − j th values with modulo M,

Nl = (aNl−i + cNl−j )MOD(M).

Such a generator again produces a sequence of pseudorandom numbers but this time
with a period much larger than M. It is also possible to construct more elaborate
algorithms by including more than two past terms in the sum of each iteration. One
example is the generator of Marsaglia and Zaman (Computers in Physics 8 (1994) 117)
which consists of two congruential relations

Nl = (Nl−3 − Nl−1)MOD(231 − 69),

followed by
Nl = (69069Nl−1 + 1013904243)MOD(232),

which according to the authors has a period larger than 294.
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Random Numbers

Using modular addition, we could use the bitwise exclusive-OR (⊕) operation so that

Nl = (Nl−i )⊕ (Nl−j )

where the bitwise action of ⊕ means that if Nl−i = Nl−j the result is 0 whereas if
Nl−i 6= Nl−j the result is 1. As an example, consider the case where Nl−i = 6 and
Nl−j = 11. The first one has a bit representation (using 4 bits only) which reads 0110
whereas the second number is 1011. Employing the ⊕ operator yields 1101, or
23 + 22 + 20 = 13.

In Fortran, the bitwise ⊕ operation is coded through the intrinsic function IEOR(m, n)

where m and n are the input numbers, while in C it is given by m ∧ n.
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Random Numbers Markov and Diffusion Metropolis

Random Numbers

The function ran0 implements

Ni = (aNi−1)MOD(M).

Note that c = 0 and that it cannot be initialized with N0 = 0.
Problem: since a and Ni−1 are integers and their multiplication could become greater
than the standard 32 bit integer, there is a trick via Schrage’s algorithm which
approximates the multiplication of large integers through the factorization

M = aq + r ,

where we have defined
q = [M/a],

and
r = M MOD a.

where the brackets denote integer division. In the code below the numbers q and r are

chosen so that r < q.
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Random Numbers

To see how this works we note first that

(aNi−1)MOD(M) = (aNi−1 − [Ni−1/q]M)MOD(M),

since we can add or subtract any integer multiple of M from aNi−1. The last term
[Ni−1/q]MMOD(M) is zero since the integer division [Ni−1/q] just yields a constant
which is multiplied with M. Rewrite as

(aNi−1)MOD(M) = (aNi−1 − [Ni−1/q](aq + r))MOD(M),
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Random Numbers

It gives

(aNi−1)MOD(M) = (a(Ni−1 − [Ni−1/q]q)− [Ni−1/q]r)) MOD(M),

yielding

(aNi−1)MOD(M) = (a(Ni−1MOD(q))− [Ni−1/q]r)) MOD(M).

[Ni−1/q]r is always smaller or equal Ni−1(r/q) and with r < q we obtain always
a number smaller than Ni−1, which is smaller than M.

Ni−1MOD(q) is between zero and q − 1 then a(Ni−1MOD(q)) < aq.

Our definition of q = [M/a] ensures that this term is also smaller than M
meaning that both terms fit into a 32-bit signed integer. None of these two terms
can be negative, but their difference could.
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Random Numbers Markov and Diffusion Metropolis

Random Numbers

/* ran0() is an "Minimal" random number generator of Park and Miller
** Set or reset the input value
** idum to any integer value (except the unlikely value MASK)
** to initialize the sequence; idum must not be altered between
** calls for sucessive deviates in a sequence.
** The function returns a uniform deviate between 0.0 and 1.0.
*/
double ran0(long &idum)
{

const int a = 16807, m = 2147483647, q = 127773;
const int r = 2836, MASK = 123459876;
const double am = 1./m;
long k;
double ans;
idum ˆ= MASK;
k = (*idum)/q;
idum = a*(idum - k*q) - r*k;
// add m if negative difference
if(idum < 0) idum += m;
ans=am*(idum);
idum ˆ= MASK;
return ans;

} // End: function ran0()
First National Winter School in eScience Lectures II & III January 29



Random Numbers Markov and Diffusion Metropolis

Random Numbers
Important tests of random numbers are the standard deviation σ and the mean
µ = 〈x〉.
For the uniform distribution with N points we have that the average 〈xk 〉 is

〈xk 〉 =
1

N

NX
i=1

xk
i p(xi ),

and taking the limit N →∞ we have

〈xk 〉 =

Z 1

0
dxp(x)xk =

Z 1

0
dxxk =

1

k + 1
,

since p(x) = 1. The mean value µ is then

µ = 〈x〉 =
1

2

while the standard deviation is

σ =
q
〈x2〉 − µ2 =

1
√

12
= 0.2886.
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Random Numbers Markov and Diffusion Metropolis

Random Numbers

Number of x-values for various intervals generated by 4 random number generators,

their corresponding mean values and standard deviations. All calculations have been

initialized with the variable idum = −1.
x-bin ran0 ran1 ran2 ran3

0.0-0.1 1013 991 938 1047
0.1-0.2 1002 1009 1040 1030
0.2-0.3 989 999 1030 993
0.3-0.4 939 960 1023 937
0.4-0.5 1038 1001 1002 992
0.5-0.6 1037 1047 1009 1009
0.6-0.7 1005 989 1003 989
0.7-0.8 986 962 985 954
0.8-0.9 1000 1027 1009 1023
0.9-1.0 991 1015 961 1026

µ 0.4997 0.5018 0.4992 0.4990
σ 0.2882 0.2892 0.2861 0.2915
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Random Numbers

Since our random numbers, which are typically generated via a linear congruential
algorithm, are never fully independent, we can then define an important test which
measures the degree of correlation, namely the so-called auto-correlation function Ck

Ck =
〈xi+k xi 〉 − 〈xi 〉2

〈x2
i 〉 − 〈xi 〉2

,

with C0 = 1. Recall that σ2 = 〈x2
i 〉 − 〈xi 〉2. The non-vanishing of Ck for k 6= 0 means

that the random numbers are not independent. The independence of the random
numbers is crucial in the evaluation of other expectation values. The expectation
values which enter the definition of Ck are given by

〈xi+k xi 〉 =
1

N − k

N−kX
i=1

xi xi+k .

The correlation function is related to the covariance.
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Random Numbers Markov and Diffusion Metropolis

Brownian Motion and Markov Processes

A Markov process is a random walk with a selected probability for making a move. The
new move is independent of the previous history of the system. The Markov process is
used repeatedly in Monte Carlo simulations in order to generate new random states.
The reason for choosing a Markov process is that when it is run for a long enough time
starting with a random state, we will eventually reach the most likely state of the
system. In thermodynamics, this means that after a certain number of Markov
processes we reach an equilibrium distribution. This mimicks the way a real system
reaches its most likely state at a given temperature of the surroundings.
To reach this distribution, the Markov process needs to obey two important conditions,
that of ergodicity and detailed balance . These conditions impose then constraints on
our algorithms for accepting or rejecting new random states. The Metropolis algorithm
discussed here abides to both these constraints. The Metropolis algorithm is widely
used in Monte Carlo simulations and the understanding of it rests within the
interpretation of random walks and Markov processes.
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Random Numbers Markov and Diffusion Metropolis

Brownian Motion and Markov Processes

In a random walk one defines a mathematical entity called a walker , whose attributes
completely define the state of the system in question. The state of the system can refer
to any physical quantities, from the vibrational state of a molecule specified by a set of
quantum numbers, to the brands of coffee in your favourite supermarket.
The walker moves in an appropriate state space by a combination of deterministic and
random displacements from its previous position.

This sequence of steps forms a chain .
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Random Numbers Markov and Diffusion Metropolis

A simple Example

The obvious case is that of a random walker on a one-, or two- or three-dimensional
lattice (dubbed coordinate space hereafter)
Consider a system whose energy is defined by the orientation of single spins. Consider
the state i , with given energy Ei represented by the following N spins

↑ ↑ ↑ . . . ↑ ↓ ↑ . . . ↑ ↓
1 2 3 . . . k − 1 k k + 1 . . . N − 1 N

We may be interested in the transition with one single spinflip to a new state j with
energy Ej

↑ ↑ ↑ . . . ↑ ↑ ↑ . . . ↑ ↓
1 2 3 . . . k − 1 k k + 1 . . . N − 1 N

This change from one microstate i (or spin configuration) to another microstate j is the

configuration space analogue to a random walk on a lattice. Instead of jumping from

one place to another in space, we ’jump’ from one microstate to another.
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Brownian Motion and Markov Processes

We wish to study the time-development of a PDF after a given number of time steps.
We define our PDF by the function w(t). In addition we define a transition probability
W . The time development of our PDF w(t), after one time-step from t = 0 is given by

wi (t = ε) = W (j → i)wj (t = 0).

This equation represents the discretized time-development of an original PDF. We can
rewrite this as a

wi (t = ε) = Wij wj (t = 0).

with the transition matrix W for a random walk left or right (cannot stay in the same
position) given by

Wij (ε) = W (il − jl, ε) =

 1
2 |i − j| = 1
0 else

We call Wij for the transition probability and we represent it as a matrix.
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Brownian Motion and Markov Processes

Both W and w represent probabilities and they have to be normalized, meaning that
that at each time step we have X

i

wi (t) = 1,

and X
j

W (j → i) = 1.

Further constraints are 0 ≤ Wij ≤ 1 and 0 ≤ wj ≤ 1. We can thus write the action of W
as

wi (t + 1) =
X

j

Wij wj (t),

or as vector-matrix relation
ŵ(t + 1) = Ŵŵ(t),

and if we have that ||ŵ(t + 1)− ŵ(t)|| → 0, we say that we have reached the most
likely state of the system, the so-called steady state or equilibrium state. Another way
of phrasing this is

w(t = ∞) = Ww(t = ∞).
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Brownian Motion and Markov Processes, a simple
Example

Consider the simple 3× 3 matrix Ŵ

Ŵ =

0@ 1/4 1/8 2/3
3/4 5/8 0
0 1/4 1/3

1A ,

and we choose our initial state as

ŵ(t = 0) =

0@ 1
0
0

1A .

The first iteration is
wi (t = ε) = W (j → i)wj (t = 0),

resulting in

ŵ(t = ε) =

0@ 1/4
3/4
0

1A .
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Brownian Motion and Markov Processes, a simple
Example

The next iteration results in

wi (t = 2ε) = W (j → i)wj (t = ε),

resulting in

ŵ(t = 2ε) =

0@ 5/23
21/32
6/32

1A .

Note that the vector ŵ is always normalized to 1. We find the steady state of the
system by solving the linear set of equations

w(t = ∞) = Ww(t = ∞).

First National Winter School in eScience Lectures II & III January 29



Random Numbers Markov and Diffusion Metropolis

Brownian Motion and Markov Processes, a simple
Example

This linear set of equations reads

W11w1(t = ∞) + W12w2(t = ∞) + W13w3(t = ∞) = w1(t = ∞)

W21w1(t = ∞) + W22w2(t = ∞) + W23w3(t = ∞) = w2(t = ∞)

W31w1(t = ∞) + W32w2(t = ∞) + W33w3(t = ∞) = w3(t = ∞)

(1)

with the constraint that X
i

wi (t = ∞) = 1,

yielding as solution

ŵ(t = ∞) =

0@ 4/15
8/15
3/15

1A .
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Brownian Motion and Markov Processes, a simple
Example

Convergence of the simple example

Iteration w1 w2 w3
0 1.00000 0.00000 0.00000
1 0.25000 0.75000 0.00000
2 0.15625 0.62625 0.18750
3 0.24609 0.52734 0.22656
4 0.27848 0.51416 0.20736
5 0.27213 0.53021 0.19766
6 0.26608 0.53548 0.19844
7 0.26575 0.53424 0.20002
8 0.26656 0.53321 0.20023
9 0.26678 0.53318 0.20005

10 0.26671 0.53332 0.19998
11 0.26666 0.53335 0.20000
12 0.26666 0.53334 0.20000
13 0.26667 0.53333 0.20000

ŵ(t = ∞) 0.26667 0.53333 0.20000

Exercise: make a small program where you perform these iterations,but change the

initial vector and study the convergence.
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Brownian Motion and Markov Processes, what is
happening?

We have after t-steps
ŵ(t) = Ŵtŵ(0),

with ŵ(0) the distribution at t = 0 and Ŵ representing the transition probability matrix.
We can always expand ŵ(0) in terms of the right eigenvectors v̂ of Ŵ as

ŵ(0) =
X

i

αi v̂ i ,

resulting in
ŵ(t) = Ŵt ŵ(0) = Ŵt

X
i

αi v̂ i =
X

i

λt
i αi v̂ i ,

with λi the i th eigenvalue corresponding to the eigenvector v̂ i .
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Brownian Motion and Markov Processes, what is
happening?

If we assume that λ0 is the largest eigenvector we see that in the limit t →∞, ŵ(t)
becomes proportional to the corresponding eigenvector v̂0. This is our steady state or
final distribution.
In our discussion below in connection with the entropy of a system and tomorrow’s
lecture on physics applications, we will relate these properties to correlation functions
such as the time-correlation function.

That will allow us to define the so-called equilibration time,viz the time needed for the

system to reach its most likely state. Form that state and on we can can compute

contributions to various statistical variables.
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Brownian Motion and Markov Processes, what is
happening?

We anticipate parts of tomorrow’s discussion:
We can relate this property to an observable like the mean magnetization of say a
magnetic material. With the probabilty ŵ(t) we can write the mean magnetization as

〈M(t)〉 =
X
µ

ŵ(t)µMµ,

or as the scalar of a vector product

〈M(t)〉 = ŵ(t)m,

with m being the vector whose elements are the values of Mµ in its various
microstates µ.
Recall our definition of an expectation value with a discrete PDF p(xi ):

E [xk ] = 〈xk 〉 =
1

N

NX
i=1

xk
i p(xi ),

provided that the sums (or integrals)
PN

i=1 p(xi ) converge absolutely (viz ,
PN

i=1 |p(xi )|
converges)
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Brownian Motion and Markov Processes, what is
happening?

We rewrite the last relation as

〈M(t)〉 = ŵ(t)m =
X

i

λt
i αi v̂ i m i .

If we define mi = v̂ i m i as the expectation value of M in the i th eigenstate we can
rewrite the last equation as

〈M(t)〉 =
X

i

λt
i αi mi .

Since we have that in the limit t →∞ the mean magnetization is dominated by the
largest eigenvalue λ0, we can rewrite the last equation as

〈M(t)〉 = 〈M(∞)〉+
X
i 6=0

λt
i αi mi .
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Brownian Motion and Markov Processes, what is
happening?

We define the quantity

τi = −
1

logλi
,

and rewrite the last expectation value as

〈M(t)〉 = 〈M(∞)〉+
X
i 6=0

αi mi e
−t/τi .

The quantities τi are the correlation times for the system. They control also the
time-correlation functions to be discussed tomorrow.

The longest correlation time is obviously given by the second largest eigenvalue τ1,

which normally defines the correlation time discussed above. For large times, this is

the only correlation time that survives. If higher eigenvalues of the transition matrix are

well separated from λ1 and we simulate long enough, τ1 may well define the

correlation time. In other cases we may not be able to extract a reliable result for τ1.
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Diffusion from Markov Chain

From experiment there are strong indications that the flux of particles j(x , t), viz., the
number of particles passing x at a time t is proportional to the gradient of w(x , t). This
proportionality is expressed mathematically through

j(x , t) = −D
∂w(x , t)

∂x
,

where D is the so-called diffusion constant, with dimensionality length2 per time. If the
number of particles is conserved, we have the continuity equation

∂j(x , t)

∂x
= −

∂w(x , t)

∂t
,

which leads to
∂w(x , t)

∂t
= D

∂2w(x , t)

∂x2
,

which is the diffusion equation in one dimension.
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Diffusion from Markov Chain

With the probability distribution function w(x , t)dx we can compute expectation values
such as the mean distance

〈x(t)〉 =

Z ∞

−∞
xw(x , t)dx ,

or

〈x2(t)〉 =

Z ∞

−∞
x2w(x , t)dx ,

which allows for the computation of the variance σ2 = 〈x2(t)〉 − 〈x(t)〉2. Note well that
these expectation values are time-dependent. In a similar way we can also define
expectation values of functions f (x , t) as

〈f (x , t)〉 =

Z ∞

−∞
f (x , t)w(x , t)dx .
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Diffusion from Markov Chain
Since w(x , t) is now treated as a PDF, it needs to obey the same criteria as discussed
in the previous chapter. However, the normalization conditionZ ∞

−∞
w(x , t)dx = 1

imposes significant constraints on w(x , t). These are

w(x = ±∞, t) = 0
∂nw(x , t)

∂xn
|x=±∞ = 0,

implying that when we study the time-derivative ∂〈x(t)〉/∂t , we obtain after integration
by parts and using Eq. (34)

∂〈x〉
∂t

=

Z ∞

−∞
x

∂w(x , t)

∂t
dx = D

Z ∞

−∞
x

∂2w(x , t)

∂x2
dx ,

leading to
∂〈x〉
∂t

= Dx
∂w(x , t)

∂x
|x=±∞ − D

Z ∞

−∞

∂w(x , t)

∂x
dx ,

implying that
∂〈x〉
∂t

= 0.
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Diffusion from Markov Chain
This means in turn that 〈x〉 is independent of time. If we choose the initial position
x(t = 0) = 0, the average displacement 〈x〉 = 0. If we link this discussion to a random
walk in one dimension with equal probability of jumping to the left or right and with an
initial position x = 0, then our probability distribution remains centered around 〈x〉 = 0
as function of time. However, the variance is not necessarily 0. Consider first

∂〈x2〉
∂t

= Dx2 ∂w(x , t)

∂x
|x=±∞ − 2D

Z ∞

−∞
x

∂w(x , t)

∂x
dx ,

where we have performed an integration by parts as we did for ∂〈x〉
∂t . A further

integration by parts results in

∂〈x2〉
∂t

= −Dxw(x , t)|x=±∞ + 2D
Z ∞

−∞
w(x , t)dx = 2D,

leading to
〈x2〉 = 2Dt ,

and the variance as
〈x2〉 − 〈x〉2 = 2Dt .

The root mean square displacement after a time t is thenq
〈x2〉 − 〈x〉2 =

√
2Dt .
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What does it mean?

Our results should be contrasted to the displacement of a free particle with initial

velocity v0. In that case the distance from the initial position after a time t is x(t) = vt

whereas for a diffusion process the root mean square value is
p
〈x2〉 − 〈x〉2 ∝

√
t .

Since diffusion is strongly linked with random walks, we could say that a random walker

escapes much more slowly from the starting point than would a free particle.
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Random Walks

Consider now a random walker in one dimension, with probability R of moving to the

right and L for moving to the left. At t = 0 we place the walker at x = 0. The walker can

then jump, with the above probabilities, either to the left or to the right for each time

step. Note that in principle we could also have the possibility that the walker remains in

the same position. This is not implemented in this example. Every step has length

∆x = l . Time is discretized and we have a jump either to the left or to the right at every

time step.
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Random Walks

Let us now assume that we have equal probabilities for jumping to the left or to the
right, i.e., L = R = 1/2. The average displacement after n time steps is

〈x(n)〉 =
nX
i

∆xi = 0 ∆xi = ±l,

since we have an equal probability of jumping either to the left or to right. The value of
〈x(n)2〉 is

〈x(n)2〉 =

 
nX
i

∆xi

!2

=
nX
i

∆x2
i +

nX
i 6=j

∆xi∆xj = l2n.
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Random Walks

For many enough steps the non-diagonal contribution is

NX
i 6=j

∆xi∆xj = 0,

since ∆xi,j = ±l . The variance is then

〈x(n)2〉 − 〈x(n)〉2 = l2n.

It is also rather straightforward to compute the variance for L 6= R. The result is

〈x(n)2〉 − 〈x(n)〉2 = 4LRl2n.

The variable n represents the number of time steps. If we define n = t/∆t , we can
then couple the variance result from a random walk in one dimension with the variance
from the diffusion equation by defining the diffusion constant as

D =
l2

∆t
.
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Random Walks, simple Algo
It is rather straightforward to implement the sampling rule for the random walk in one
dimension:

for (int trial=1; trial <= max_trials; trial++){
int position = 0;
for (int walks = 1; walks <= number_walks; walks++){

if (ran0(&idum) <= move_probability) {
position += 1;

}
else {

position -= 1;
}
walk_cumulative[walks] += position;
walk2_cumulative[walks] += position*position;

} // end of loop over walks
} // end of loop over trials

} // end mc_sampling function

Excercise: Extend this to two and three-dimensions. Codes at

http://www.uio.no/studier/emner/matnat/fys/FYS3150/h06/

undervisningsmateriale/Programs/ and go to chapter 9 for both C++ and

Fortran95 codes.
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Diffusion from Markov Chain

When solving partial differential equations such as the diffusion equation numerically,
the derivatives are always discretized. We can rewrite the time derivative as

∂w(x , t)

∂t
≈

w(i, n + 1)− w(i, n)

∆t
,

whereas the gradient is approximated as

D
∂2w(x , t)

∂x2
≈ D

w(i + 1, n) + w(i − 1, n)− 2w(i, n)

(∆x)2
,

resulting in the discretized diffusion equation

w(i, n + 1)− w(i, n)

∆t
= D

w(i + 1, n) + w(i − 1, n)− 2w(i, n)

(∆x)2
,

where n represents a given time step and i a step in the x-direction.
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Explicit PDE Scheme

This results in a matrix-vector multiplication

wj+1 = Ŵwj

with the matrix Ŵ given by

Ŵ =

0BB@
1− 2α α 0 0 . . .

α 1− 2α α 0 . . .
. . . . . . . . . . . .

0 . . . 0 . . . α 1− 2α

1CCA
which means we can rewrite the original partial differential equation as a set of
matrix-vector multiplications

wj+1 = Ŵwj = · · · = Ŵ j+1w0,

where w0 is the initial vector at time t = 0 defined by the initial value g(x).
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Explicit PDE Scheme

α = ∆t/∆x2

For convergence spectral radius ρ(Ŵ ) of our matrix Ŵ satisfies the condition

ρ(Ŵ ) < 1,

The spectral radius is defined as

ρ(Ŵ ) = max
n
|λ| : det(Ŵ − λ̂I)

o
,

which is interpreted as the smallest number such that a circle with radius centered at
zero in the complex plane contains all eigenvalues of Â. If the matrix is positive definite,
the condition is always satisfied.
This requirement results in

−1 < 1− α2 (1− cos(θ)) < 1,

which is satisfied only if α < (1− cos(θ))−1 resulting in α ≤ 1/2 or ∆/∆x2 ≤ 1/2.
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Diffusion from Markov Chain

A Markov process allows in principle for a microscopic description of Brownian motion.

As with the random walk studied in the previous section, we consider a particle which

moves along the x-axis in the form of a series of jumps with step length ∆x = l . Time

and space are discretized and the subsequent moves are statistically indenpendent,

i.e., the new move depends only on the previous step and not on the results from

earlier trials. We start at a position x = jl = j∆x and move to a new position x = i∆x

during a step ∆t = ε, where i ≥ 0 and j ≥ 0 are integers. The original probability

distribution function (PDF) of the particles is given by wi (t = 0) where i refers to a

specific position on a grid, with i = 0 representing x = 0. The function wi (t = 0) is now

the discretized version of w(x , t). We can regard the discretized PDF as a vector.
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Diffusion from Markov Chain

For the Markov process we have a transition probability from a position x = jl to a
position x = il given by

Wij (ε) = W (il − jl, ε) =

 1
2 |i − j| = 1
0 else

We call Wij for the transition probability and we can represent it, see below, as a matrix.
Our new PDF wi (t = ε) is now related to the PDF at t = 0 through the relation

wi (t = ε) = W (j → i)wj (t = 0).
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Diffusion from Markov Chain

This equation represents the discretized time-development of an original PDF. Since
both W and w represent probabilities, they have to be normalized, i.e., we require that
at each time step we have X

i

wi (t) = 1,

and X
j

W (j → i) = 1.

The further constraints are 0 ≤ Wij ≤ 1 and 0 ≤ wj ≤ 1. Note that the probability for
remaining at the same place is in general not necessarily equal zero. In our Markov
process we allow only for jumps to the left or to the right.
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Diffusion from Markov Chain

The time development of our initial PDF can now be represented through the action of
the transition probability matrix applied n times. At a time tn = nε our initial distribution
has developed into

wi (tn) =
X

j

Wij (tn)wj (0),

and defining
W (il − jl, nε) = (W n(ε))ij

we obtain
wi (nε) =

X
j

(W n(ε))ij wj (0),

or in matrix form
ˆw(nε) = Ŵ n(ε)ŵ(0).
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Diffusion from Markov Chain

The matrix Ŵ can be written in terms of two matrices

Ŵ =
1

2

“
L̂ + R̂

”
,

where L̂ and R̂ represent the transition probabilities for a jump to the left or the right,
respectively. For a 4× 4 case we could write these matrices as

R̂ =

0BB@
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

1CCA ,

and

L̂ =

0BB@
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

1CCA .
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Diffusion from Markov Chain

However, in principle these are infinite dimensional matrices since the number of time
steps are very large or infinite. For the infinite case we can write these matrices
Rij = δi,(j+1) and Lij = δ(i+1),j , implying that

L̂R̂ = R̂L̂ = 1,

and
L̂ = R̂−1

To see that L̂R̂ = R̂L̂ = 1, perform e.g., the matrix multiplication

L̂R̂ =
X

k

L̂ik R̂kj =
X

k

δ(i+1),k δk,(j+1) = δi+1,j+1 = δi,j ,

and only the diagonal matrix elements are different from zero.
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Diffusion from Markov Chain

For the first time step we have thus

Ŵ =
1

2

“
L̂ + R̂

”
,

and using the properties in Eqs. (51) and (51) we have after two time steps

Ŵ 2(2ε) =
1

4

“
L̂2 + R̂2 + 2R̂L̂

”
,

and similarly after three time steps

Ŵ 3(3ε) =
1

8

“
L̂3 + R̂3 + 3R̂L̂2 + 3R̂2L̂

”
.
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Diffusion from Markov Chain

Using the binomial formula

nX
k=0

„
n
k

«
âk b̂n−k = (a + b)n,

we have that the transition matrix after n time steps can be written as

Ŵ n(nε)) =
1

2n

nX
k=0

„
n
k

«
R̂k L̂n−k ,

or

Ŵ n(nε)) =
1

2n

nX
k=0

„
n
k

«
L̂n−2k =

1

2n

nX
k=0

„
n
k

«
R̂2k−n,
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Diffusion from Markov Chain

and using Rm
ij = δi,(j+m) and Lm

ij = δ(i+m),j we arrive at

W (il − jl, nε) =

8<: 1
2n

„
n

1
2 (n + i − j)

«
|i − j| ≤ n

0 else
,

and n + i − j has to be an even number.
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Diffusion from Markov Chain

We note that the transition matrix for a Markov process has three important properties:

It depends only on the difference in space i − j , it is thus homogenous in space.

It is also isotropic in space since it is unchanged when we go from (i, j) to
(−i,−j).

It is homogenous in time since it depends only the difference between the initial
time and final time.

If we place the walker at x = 0 at t = 0 we can represent the initial PDF with
wi (0) = δi,0. Using Eq. (49) we have

wi (nε) =
X

j

(W n(ε))ij wj (0) =
X

j

1

2n

„
n

1
2 (n + i − j)

«
δj,0,

resulting in

wi (nε) =
1

2n

„
n

1
2 (n + i)

«
|i| ≤ n
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Diffusion from Markov Chain

Using the recursion relation for the binomials„
n + 1

1
2 (n + 1 + i))

«
=

„
n

1
2 (n + i + 1)

«
+

„
n

1
2 (n + i)− 1

«
we obtain, defining x = il , t = nε and setting

w(x , t) = w(il, nε) = wi (nε),

w(x , t + ε) =
1

2
w(x + l, t) +

1

2
w(x − l, t),

and adding and subtracting w(x , t) and multiplying both sides with l2/ε we have
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Diffusion from Markov Chain

w(x , t + ε)− w(x , t)

ε
=

l2

2ε

w(x + l, t)− 2w(x , t) + w(x − l, t)

l2
,

and identifying D = l2/2ε and letting l = ∆x and ε = ∆t we see that this is nothing but
the discretized version of the diffusion equation. Taking the limits ∆x → 0 and ∆t → 0
we recover

∂w(x , t)

∂t
= D

∂2w(x , t)

∂x2
,

the diffusion equation.
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Continuous Equation

Hitherto we have considered discretized versions of all equations. Our initial probability
distribution function was then given by

wi (0) = δi,0,

and its time-development after a given time step ∆t = ε is

wi (t) =
X

j

W (j → i)wj (t = 0).

The continuous analog to wi (0) is

w(x) → δ(x),

where we now have generalized the one-dimensional position x to a
generic-dimensional vector x. The Kroenecker δ function is replaced by the δ
distribution function δ(x) at t = 0.

The transition from a state j to a state i is now replaced by a transition to a state with

position y from a state with position x.

First National Winter School in eScience Lectures II & III January 29



Random Numbers Markov and Diffusion Metropolis

Continuous Equation

The discrete sum of transition probabilities can then be replaced by an integral and we
obtain the new distribution at a time t + ∆t as

w(y, t + ∆t) =

Z
W (y, x, ∆t)w(x, t)dx,

and after m time steps we have

w(y, t + m∆t) =

Z
W (y, x, m∆t)w(x, t)dx.

When equilibrium is reached we have

w(y) =

Z
W (y, x, t)w(x)dx.
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Continuous Equation

We can solve the equation for w(y, t) by making a Fourier transform to momentum
space. The PDF w(x, t) is related to its Fourier transform w̃(k, t) through

w(x, t) =

Z ∞

−∞
dk exp (ikx)w̃(k, t),

and using the definition of the δ-function

δ(x) =
1

2π

Z ∞

−∞
dk exp (ikx),

we see that
w̃(k, 0) = 1/2π.
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Continuous Equation

We can then use the Fourier-transformed diffusion equation

∂w̃(k, t)

∂t
= −Dk2w̃(k, t),

with the obvious solution

w̃(k, t) = w̃(k, 0) exp
h
−(Dk2t)

”
=

1

2π
exp

h
−(Dk2t)

i
.

We then obtain

w(x, t) =

Z ∞

−∞
dk exp [ikx ]

1

2π
exp

h
−(Dk2t)

i
=

1
√

4πDt
exp

h
−(x2/4Dt)

i
,

with the normalization condition Z ∞

−∞
w(x, t)dx = 1.
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Continuous Equation

It is rather easy to verify by insertion that the above is a solution of the diffusion
equation. The solution represents the probability of finding our random walker at
position x at time t if the initial distribution was placed at x = 0 at t = 0.
There is another interesting feature worth observing. The discrete transition probability
W itself is given by a binomial distribution. The results from the central limit theorem,
see yesterday’s lecture, state that the transition probability in the limit n →∞
converges to the normal distribution. It is then possible to show that

W (il − jl, nε) → W (y, x, ∆t) =
1

√
4πD∆t

exp
h
−((y − x)2/4D∆t)

i
,

and that it satisfies the normalization condition and is itself a solution to the diffusion
equation.
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Entropy and Equilibrium

The definition of the entropy S (as a dimensionless quantity here) is

S = −
X

i

wi ln(wi ),

where wi is the probability of finding our system in a state i . For our one-dimensional

randow walk it represents the probability for being at position i = i∆x after a given

number of time steps. Assume now that we have N random walkers at i = 0 and t = 0

and let these random walkers diffuse as function of time. We compute then the

probability distribution for N walkers after a given number of steps i along x and time

steps j . We can then compute an entropy Sj for a given number of time steps by

summing over all probabilities i . The code used to compute these results is in

programs/chapter9/program4.cpp. Here we have used 100 walkers on a lattice of

length from L = −50 to L = 50 employing periodic boundary conditions meaning that if

a walker reaches the point x = L it is shifted to x = −L and if x = −L it is shifted to

x = L.
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Entropy

// loop over all time steps
for (int step=1; step <= time_steps; step++){

// move all walkers with periodic boundary conditions
for (int walks = 1; walks <= walkers; walks++){

if (ran0(&idum) <= move_probability) {
if ( x[walks] +1 > length) {

x[walks] = -length;
}
else{

x[walks] += 1;
}

}
else {

if ( x[walks] -1 < -length) {
x[walks] = length;

}
else{

x[walks] -= 1;
}

}
} // end of loop over walks

} // end of loop over trials
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Entropy

// at the final time step we compute the probability
// by counting the number of walkers at every position
for ( int i = -length; i <= length; i++){

int count = 0;
for( int j = 1; j <= walkers; j++){

if ( x[j] == i ) {
count += 1;

}
}
probability[i+length] = count;

}
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Entropy

// Writes the results to screen
void output(int length, int time_steps, int walkers, int *probability)
{

double entropy, histogram;
// find norm of probability
double norm = 1.0/walkers;
// compute the entropy
entropy = 0.; histogram = 0.;
for( int i = -length; i <= length; i++){

histogram = (double) probability[i+length]*norm;
if ( histogram > 0.0) {
entropy -= histogram*log(histogram);
}

}
cout << setiosflags(ios::showpoint | ios::uppercase);
cout << setw(6) << time_steps;
cout << setw(15) << setprecision(8) << entropy << endl;

} // end of function output
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Entropy

At small time steps the entropy is very small, reflecting the fact that we have an ordered

state. As time elapses, the random walkers spread out in space (here in one

dimension) and the entropy increases as there are more states, that is positions

accesible to the system. We say that the system shows an increased degree of

disorder. After several time steps, we see that the entropy reaches a constant value, a

situation called a steady state. This signals that the system has reached its equilibrium

situation and that the random walkers spread out to occupy all possible available

states. At equilibrium it means thus that all states are equally probable and this is not

baked into any dynamical equations such as Newton’s law of motion. It occurs because

the system is allowed to explore all possibilities. An important hypothesis, which has

never been proven rigorously but for certain systems, is the ergodic hypothesis which

states that in equilibrium all available states of a closed system have equal probability.

This hypothesis states also that if we are able to simulate long enough, then one

should be able to trace through all possible paths in the space of available states to

reach the equilibrium situation. Our Markov process should be able to reach any state

of the system from any other state if we run for long enough.
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Detailed Balance

An important condition we require that our Markov chain should satisfy is that of
detailed balance. In statistical physics this condition ensures that it is e.g., the
Boltzmann distribution which is generated when equilibrium is reached. The definition
for being in equilibrium is that the rates at which a system makes a transition to or from
a given state i have to be equal, that isX

i

W (j → i)wj =
X

i

W (i → j)wi .

However, the condition that the rates should equal each other is in general not sufficient
to guarantee that we, after many simulations, generate the correct distribution. We
therefore introduce an additional condition, namely that of detailed balance

W (j → i)wj = W (i → j)wi .

At equilibrium detailed balance gives thus

W (j → i)

W (i → j)
=

wi

wj
.
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Ergodicity

It should be possible for any Markov process to reach every
possible state of the system from any starting point if the
simulations is carried out for a long enough time. If any state in
a distribution which has a probability different from zero and
this state cannot be reached from any given starting point if we
simulate long enough, then the system is not ergodic.
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The Boltzmann Distribution as Example

We introduce the Boltzmann distribution

wi =
exp (−β(Ei ))

Z
,

which states that probability of finding the system in a state i with energy Ei at an
inverse temperature β = 1/kBT is wi ∝ exp (−β(Ei )). The denominator Z is a
normalization constant which ensures that the sum of all probabilities is normalized to
one. It is defined as the sum of probabilities over all microstates j of the system

Z =
X

j

exp (−β(Ei )).

From the partition function we can in principle generate all interesting quantities for a

given system in equilibrium with its surroundings at a temperature T .
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Boltzmann Distribution as Example

With the probability distribution given by the Boltzmann distribution we are now in the
position where we can generate expectation values for a given variable A through the
definition

〈A〉 =
X

j

Aj wj =

P
j Aj exp (−β(Ej )

Z
.

In general, most systems have an infinity of microstates making thereby the
computation of Z practically impossible and a brute force Monte Carlo calculation over
a given number of randomly selected microstates may therefore not yield those
microstates which are important at equilibrium. To select the most important
contributions we need to use the condition for detailed balance. Since this is just given
by the ratios of probabilities, we never need to evaluate the partition function Z . For the
Boltzmann distribution, detailed balance results in

wi

wj
= exp (−β(Ei − Ej )).
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Boltzmann Distribution as Example

Let us now specialize to a system whose energy is defined by the orientation of single
spins. Consider the state i , with given energy Ei represented by the following N spins

↑ ↑ ↑ . . . ↑ ↓ ↑ . . . ↑ ↓
1 2 3 . . . k − 1 k k + 1 . . . N − 1 N

We are interested in the transition with one single spinflip to a new state j with energy
Ej

↑ ↑ ↑ . . . ↑ ↑ ↑ . . . ↑ ↓
1 2 3 . . . k − 1 k k + 1 . . . N − 1 N

We saw previously that this change from one microstate i (or spin configuration) to

another microstate j is the configuration space analogue to a random walk on a lattice.
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Boltzmann Distribution as Example

However, the selection of states has to generate a final distribution which is the
Boltzmann distribution. This is again the same we saw for a random walker, for the
discrete case we had always a binomial distribution, whereas for the continuous case
we had a normal distribution. The way we sample configurations should result in, when
equilibrium is established, in the Boltzmann distribution. Else, our algorithm for
selecting microstates has to be wrong.
Since we do not know the analytic form of the transition rate, we are free to model it as

W (i → j) = g(i → j)A(i → j),

where g is a selection probability while A is the probability for accepting a move. It is

also called the acceptance ratio.
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Boltzmann Distribution as Example

The selection probability should be same for all possible spin orientations, namely

g(i → j) =
1

N
.

With detailed balance this gives

g(j → i)A(j → i)

g(i → j)A(i → j)
= exp (−β(Ei − Ej )),

but since the selection ratio is the same for both transitions, we have

A(j → i)

A(i → j)
= exp (−β(Ei − Ej ))

In general, we are looking for those spin orientations which correspond to the average

energy at equilibrium.
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Random Numbers Markov and Diffusion Metropolis

Boltzmann Distribution as Example

We are in this case interested in a new state Ej whose energy is lower than Ei , viz.,
∆E = Ej − Ei ≤ 0. A simple test would then be to accept only those microstates which
lower the energy. Suppose we have ten microstates with energy
E0 ≤ E1 ≤ E2 ≤ E3 ≤ · · · ≤ E9. Our desired energy is E0. At a given temperature T
we start our simulation by randomly choosing state E9. Flipping spins we may then find
a path from E9 → E8 → E7 · · · → E1 → E0. This would however lead to biased
statistical averages since it would violate the ergodic hypothesis discussed above. This
principle states that it should be possible for any Markov process to reach every
possible state of the system from any starting point if the simulations is carried out for a
long enough time.
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Random Numbers Markov and Diffusion Metropolis

Boltzmann Distribution as Example

Any state in a Boltzmann distribution has a probability different from zero and if such a
state cannot be reached from a given starting point, then the system is not ergodic.
This means that another possible path to E0 could be
E9 → E7 → E8 · · · → E9 → E5 → E0 and so forth. Even though such a path could
have a negligible probability it is still a possibility, and if we simulate long enough it
should be included in our computation of an expectation value.

Thus, we require that our algorithm should satisfy the principle of detailed balance and

be ergodic. One possible way is the Metropolis algorithm.
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Metropolis Algorithm

The equation for detailed balance

A(µ → ν)

A(ν → µ)
= exp (−β(Eν − Eµ))

is general and we could replace the Boltzmann distribution with other distributions as
well. It specifies the ratio of pairs of acceptance probabilities, which leaves us with
quite some room to manouvre.

We give the largest of the two acceptance ratios the value 1 and adjust the other
to satisfy the constraint.

If Eµ < Eν then the larger of the two acceptance ratios is A(ν → µ) and we set
to 1.

Then we must have

A(µ → ν) = exp (−β(Eν − Eµ))

if Eν − Eµ > 0 and 1 otherwise. And that is the Metropolis algorithm.
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Random Numbers Markov and Diffusion Metropolis

Implementation

Establish an initial energy Eb

Do a random change of this initial state by e.g., flipping an
individual spin. This new state has energy Et . Compute then
∆E = Et − Eb

If ∆E ≤ 0 accept the new configuration.

If ∆E > 0, compute w = e−(β∆E).

Compare w with a random number r . If r ≤ w accept, else keep
the old configuration.

Compute the terms in the sums
∑

AsPs.

Repeat the above steps in order to have a large enough number
of microstates

For a given number of MC cycles, compute then expectation
values.
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Test of the Metropolis Algorithm

Want to show that the Metropolis algorithm generates the Boltzmann distribution

P(β) =
e−βE

Z
,

with β = 1/kT being the inverse temperature, E is the energy of the system and Z is
the partition function. The only functions you will need are those to generate random
numbers.
We are going to study one single particle in equilibrium with its surroundings, the latter
modeled via a large heat bath with temperature T .
The model used to describe this particle is that of an ideal gas in one dimension and
with velocity −v or v . We are interested in finding P(v)dv , which expresses the
probability for finding the system with a given velocity v ∈ [v , v + dv ]. The energy for
this one-dimensional system is

E =
1

2
kT =

1

2
v2,

with mass m = 1.
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Random Numbers Markov and Diffusion Metropolis

Test of the Metropolis Algorithm

Read in the temperature T , the number of Monte Carlo cycles, and the initial
velocity. You should also read in the change in velocity δv used in every Monte
Carlo step. Let the temperature have dimension energy.

Thereafter choose a maximum velocity given by e.g., vmax ∼ 10
√

T . Then you
construct a velocity interval defined by vmax and divided it in small intervals
through vmax/N, with N ∼ 100− 1000. For each of these intervals find out how
many times a given velocity during the Monte Carlo sampling appears in each
specific interval.

The number of times a given velocity appears in a specific interval is used to
construct a histogram representing P(v)dv . To achieve this construct a vector
P[N] which contains the number of times a given velocity appears in the
subinterval v , v + dv .
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Random Numbers Markov and Diffusion Metropolis

Test of the Metropolis Algorithm

for( montecarlo_cycles=1; Max_cycles; montecarlo_cycles++) {
...
// change speed as function of delta v
v_change = (2*ran1(&idum) -1 )* delta_v;
v_new = v_old+v_change;
// energy change
delta_E = 0.5*(v_new*v_new - v_old*v_old) ;
......
// Metropolis algorithm begins here

if ( ran1(&idum) <= exp(-beta*delta_E) ) {
accept_step = accept_step + 1 ;
v_old = v_new ;

}
// thereafter we must fill in P[N] as a function of
// the new speed
// upgrade mean velocity, energy and variance
}

Codes at http://www.uio.no/studier/emner/matnat/fys/FYS3150/h06/

undervisningsmateriale/Projects/ and go to project 3 and solution for C++

implementation.
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Test of the Metropolis Algorithm, analytic Results

The partition function of the system of interest is:

Z =

Z +∞

−∞
e−βv2/2dv =

√
2πβ−1/2

The mean velocity

〈v〉 =

Z +∞

−∞
ve−βv2/2dv = 0

The expressions for 〈E〉 and σE assume the following form:

〈E〉 =

Z +∞

−∞

v2

2
e−βv2/2dv = −

1

Z

∂Z

∂β
=

1

2
β−1 =

1

2
T

〈E2〉 =

Z +∞

−∞

v4

4
e−βv2/2dv =

1

Z

∂2Z

∂β2
=

3

4
β−2 =

3

4
T 2

and

σE = 〈E2〉 − 〈E〉2 =
1

2
T 2
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Test of the Metropolis Algorithm, Results

Observable Analytical value Numerical value

〈v〉 0.00000 -0.00679
〈E〉 2.00000 1.99855
σE 8.00000 8.06669
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Test of the Metropolis Algorithm
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Test of the Metropolis Algorithm
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Test of the Metropolis Algorithm
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