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Repetition QMC StatPhys Sociology

’Iacta Alea est’, the die is cast!

Plan for the lectures

1 January 28: Introduction to Monte Carlo methods,
probability distributions and Monte Carlo Integration.

2 January 29: Random numbers, Markov chains, diffusion
and the Metropolis algorithm.

3 January 30: Applications in sociology, simulations of phase
transitions in physics and quantum physics.

4 All material taken from my text on Computational Physics,
see http://www.uio.no/studier/emner/matnat/
fys/FYS3150/h06/undervisningsmateriale/
LectureNotes/ .
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Reminder: What is Monte Carlo?

1 Monte Carlo methods are nowadays widely used, from the
integration of multi-dimensional integrals to solving ab initio
problems in chemistry, physics, medicine, biology, or even
Dow-Jones forecasting. Computational finance is one of
the novel fields where Monte Carlo methods have found a
new field of applications, with financial engineering as an
emerging field.

2 Numerical methods that are known as Monte Carlo
methods can be loosely described as statistical simulation
methods, where statistical simulation is defined in quite
general terms to be any method that utilizes sequences of
random numbers to perform the simulation.
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Reminder: Monte Carlo Keywords

Consider it is a numerical experiment

Be able to generate random variables following a given
probability distribution function (PDF). The starting point for
any calculation is the derivation of random numbers based
on the uniform distribution.

Sampling rule for accepting a move, important algo
Metropolis-Hastings

Compute standard deviation and other expectation values

Techniques for improving errors

First National Winter School in eScience Lectures IV & V, January 30
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Metropolis-Hastings Algorithm

The equation for detailed balance with the acceptance probability A is

A(µ→ ν)

A(ν → µ)
= exp (−β(Eν − Eµ))

is general and we could replace the Boltzmann distribution with other distributions as
well. It specifies the ratio of pairs of acceptance probabilities, which leaves us with
quite some room to manouvre.

We give the largest of the two acceptance ratios the value 1 and adjust the other
to satisfy the constraint.

If Eµ < Eν then the larger of the two acceptance ratios is A(ν → µ) and we set
to 1.

Then we must have

A(µ→ ν) = exp (−β(Eν − Eµ))

if Eν − Eµ > 0 and 1 otherwise. And that is the Metropolis-Hastings algorithm.
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More general Definition

A Markov chain Monte Carlo method for the simulation of a distribution p is any method
producing an ergodic Markov chain of events x whose stationary distribution is p.

Generate an initial value x (i).

Generate a trial value yt with probability f (yt |x (i)).

Take a new value

x (i+1) =


yt with probability= ρ(x (i), yt )

x (i) with probability= 1− ρ(x (i), yt )

We have defined

ρ(x , y) = min


p(y)f (x |y)

p(x)f (y |x)
, 1
ff
.

The distribution f is often called the instrumental (we will relate it to the jumping
of a walker) or proposal distribution while ρ is the Metropolis-Hastings
acceptance probability.
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Implementation

Establish an initial state with some selected features to test.

Do a random change of this initial state.

Compute the Metropolis-Hastings acceptance probability ρ

Compare ρ with a random number r . If r ≤ ρ accept, else keep
the old configuration.

Compute the terms needed to obtain expectations values.

Repeat the above steps in order to have as good statistics as
possible.

For a given number of MC cycles, compute then the final
expectation values.
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A good introductory Text

Casella and Roberts

C. R. Robert and
G. Casella,Monte
Carlo Statistical
Methods, Springer,
2nd edition 2004.

Chapters 1-7 cover to
a large extent my
lectures, with proofs
and many more
examples.
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Quantum Monte Carlo

Most quantum mechanical problems of interest in e.g., atomic, molecular, nuclear and
solid state physics consist of a large number of interacting electrons and ions or
nucleons. The total number of particles N is usually sufficiently large that an exact
solution cannot be found. Typically, the expectation value for a chosen hamiltonian for a
system of N particles is

〈H〉 =R
dR1dR2 . . . dRNΨ∗(R1,R2, . . . ,RN)H(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)R

dR1dR2 . . . dRNΨ∗(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)
,

an in general intractable problem.
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Quantum Monte Carlo

As an example from the nuclear many-body problem, we have Schrödinger’s equation
as a differential equation

ĤΨ(r1, .., rA, α1, .., αA) = EΨ(r1, .., rA, α1, .., αA)

where
r1, .., rA,

are the coordinates and
α1, .., αA,

are sets of relevant quantum numbers such as spin and isospin for a system of A

nucleons (A = N + Z , N being the number of neutrons and Z the number of protons).
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Quantum Monte Carlo

There are

2A ×
„

A
Z

«
coupled second-order differential equations in 3A dimensions.
For a nucleus like 10Be this number is 215040. This is a truely challenging many-body
problem.

Methods like partial differential equations can at most be used for 2-3 particles.
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Quantum Many-particle(body) Methods

1 Monte-Carlo methods

2 Renormalization group (RG) methods, in particular density matrix RG

3 Large-scale diagonalization (Iterative methods, Lanczo’s method,
dimensionalities 1010 states)

4 Coupled cluster theory, favoured method in quantum chemistry, molecular and
atomic physics. Applications to ab initio calculations in nuclear physics as well for
large nuclei.

5 Perturbative many-body methods

6 Green’s function methods

7 Density functional theory/Mean-field theory.....

The physics of the system hints at which many-body methods to use. For systems with

strong correlations among the constituents, item 5 and 7 are ruled out.
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Pros and Cons of Monte Carlo

Is physically intuitive.

Allows one to study systems with many degrees of freedom. Diffusion Monte
Carlo (DMC) and Green’s function Monte Carlo (GFMC) yield in principle the
exact solution to Schrödinger’s equation.

Variational Monte Carlo (VMC) is easy to implement but needs a reliable trial
wave function, can be difficult to obtain.

DMC/GFMC for fermions (spin with half-integer values, electrons, baryons,
neutrinos, quarks) has a sign problem. Nature prefers an anti-symmetric wave
function. PDF in this case given distribution of random walkers (p ≥ 0).

The solution has a statistical error, which can be large. Hard to compete with
light systems in quantum chemistry (less than 100 electrons).

There is a limit for how large systems one can study, DMC needs a huge number
of random walkers in order to achieve stable results.

Obtain only the lowest-lying states with a given symmetry. Difficult to get excited
states.
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Where and why do we use Monte Carlo Methods in
Quantum Physics

Quantum systems with many particles at finite temperature: Path Integral Monte
Carlo with applications to dense matter and quantum liquids (phase transitions
from normal fluid to superfluid). Strong correlations.

Bose-Einstein condensation of dilute gases, method transition from non-linear
PDE to Diffusion Monte Carlo as density increases.

Light atoms, molecules and nuclei. In quantum chemistry, atomic and molecular
physics however precision not good enough. Applications in nuclear physics for
systems with less than 12 nucleons.

Lattice Quantum-Chromo Dynamics. Impossible to solve without MC
calculations.

Simulations of systems in solid state physics, from semiconductors to spin
systems. Many electrons active and possibly strong correlations.
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Bose-Einstein Condensation of atoms, thousands of
Atoms in one State
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Lattice QCD

Brief Description

Analytic or perturbative solutions in QCD are hard or
impossible due to the highly nonlinear nature of the strong
force. The formulation of QCD on a discrete rather than
continuous space-time naturally introduces a momentum cut off
at the order 1/a, which regularizes the theory. As a result lattice
QCD is mathematically well-defined. Most importantly, lattice
QCD provides the framework for investigation of
non-perturbative phenomena such as confinement and
quark-gluon plasma formation, which are intractable by means
of analytic field theories.
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Lattice QCD, Ishii et al, nucl-th/0611096
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Quantum Monte Carlo and Schrödinger’s equation

For one-body problems (one dimension)

−
~2

2m
∇2Ψ(x , t) + V (x , t)Ψ(x , t) = ı~

∂Ψ(x , t)

∂t
,

Quantum mechanical probablity distribution function (PDF)

P(x , t) = Ψ(x , t)∗Ψ(x , t)

P(x , t)dx = Ψ(x , t)∗Ψ(x , t)dx

Interpretation: probability of finding the system in a region between x and x + dx .
Always real

Ψ(x , t) = R(x , t) + ıI(x , t)

yielding
Ψ(x , t)∗Ψ(x , t) = (R − ıI)(R + ıI) = R2 + I2

Variational Monte Carlo uses only P(x , t)!!
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Quantum Monte Carlo and Schrödinger’s equation

Petit digression
Choose τ = it/~.
The time-dependent (1-dim) Schrödinger equation becomes then

∂Ψ(x , τ)

∂τ
=

~2

2m

∂2Ψ(x , τ)

∂x2
− V (x , τ)Ψ(x , τ).

With V = 0 we have a diffusion equation in complex time with diffusion constant

D =
~2

2m
.

Used in diffusion Monte Carlo calculations. The wave function is given by the

distribution of random walkers. Leads to problems if the wave function is

anti-symmetric.
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Quantum Monte Carlo and Schrödinger’s equation

Conditions which Ψ has to satisfy:

1 Normalization Z ∞
−∞

P(x , t)dx =

Z ∞
−∞

Ψ(x , t)∗Ψ(x , t)dx = 1

meaning that Z ∞
−∞

Ψ(x , t)∗Ψ(x , t)dx <∞

2 Ψ(x , t) and ∂Ψ(x , t)/∂x must be finite

3 Ψ(x , t) and ∂Ψ(x , t)/∂x must be continuous.

4 Ψ(x , t) and ∂Ψ(x , t)/∂x must be single valued

Square integrable functions.
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First Postulate

Any physical quantity A(~r , ~p) which depends on position~r and momentum ~p has a
corresponding quantum mechanical operator by replacing ~p −i~~5, yielding the
quantum mechanical operator bA = A(~r ,−i~ ~5).

Quantity Classical definition QM operator

Position ~r b̃r = ~r
Momentum ~p b̃p = −i~~5
Orbital momentum ~L = ~r × ~p b̃L = ~r × (−i~~5)

Kinetic energy T = (~p)2/2m bT = −(~2/2m)(~5)2

Total energy H = (p2/2m) + V (~r) bH = −(~2/2m)(~5)2 + V (~r)
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Second Postulate

The only possible outcome of an ideal measurement of the physical quantity A are the
eigenvalues of the corresponding quantum mechanical operator bA.

bAψν = aνψν ,

resulting in the eigenvalues a1, a2, a3, · · · as the only outcomes of a measurement.

The corresponding eigenstates ψ1, ψ2, ψ3 · · · contain all relevant information about the

system.
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Third Postulate

Assume Φ is a linear combination of the eigenfunctions ψν for bA,

Φ = c1ψ1 + c2ψ2 + · · · =
X

ν

cνψν .

The eigenfunctions are orthogonal and we get

cν =

Z
(Φ)∗ψνdτ.

From this we can formulate the third postulate:

When the eigenfunction is Φ, the probability of obtaining the value aν as the outcome

of a measurement of the physical quantity A is given by |cν |2 and ψν is an

eigenfunction of bA with eigenvalue aν .
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Third Postulate

As a consequence one can show that:
when a quantal system is in the state Φ, the mean value or expectation value of a
physical quantity A(~r , ~p) is given by

〈A〉 =

Z
(Φ)∗bA(~r ,−i~~5)Φdτ.

We have assumed that Φ has been normalized, viz.,
R

(Φ)∗Φdτ = 1. Else

〈A〉 =

R
(Φ)∗bAΦdτR
(Φ)∗Φdτ

.
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Fourth Postulate

The time development of of a quantal system is given by

i~
∂Ψ

∂t
= bHΨ,

with bH the quantal Hamiltonian operator for the system.
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Quantum Monte Carlo

Given a hamiltonian H and a trial wave function ΨT , the variational principle states that
the expectation value of 〈H〉, defined through

E [H] = 〈H〉 =

R
dRΨ∗T (R)H(R)ΨT (R)R

dRΨ∗T (R)ΨT (R)
,

is an upper bound to the ground state energy E0 of the hamiltonian H, that is

E0 ≤ 〈H〉.

In general, the integrals involved in the calculation of various expectation values are

multi-dimensional ones. Traditional integration methods such as the Gauss-Legendre

will not be adequate for say the computation of the energy of a many-body system.
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Quantum Monte Carlo

The trial wave function can be expanded in the eigenstates of the hamiltonian since
they form a complete set, viz.,

ΨT (R) =
X

i

aiΨi (R),

and assuming the set of eigenfunctions to be normalized one obtainsP
nm a∗man

R
dRΨ∗m(R)H(R)Ψn(R)P

nm a∗man
R

dRΨ∗m(R)Ψn(R)
=

P
n a2

nEnP
n a2

n
≥ E0,

where we used that H(R)Ψn(R) = EnΨn(R). In general, the integrals involved in the

calculation of various expectation values are multi-dimensional ones. The variational

principle yields the lowest state of a given symmetry.
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Quantum Monte Carlo

In most cases, a wave function has only small values in large parts of configuration
space, and a straightforward procedure which uses homogenously distributed random
points in configuration space will most likely lead to poor results. This may suggest that
some kind of importance sampling combined with e.g., the Metropolis algorithm may
be a more efficient way of obtaining the ground state energy. The hope is then that
those regions of configurations space where the wave function assumes appreciable
values are sampled more efficiently.

The tedious part in a VMC calculation is the search for the variational minimum. A

good knowledge of the system is required in order to carry out reasonable VMC

calculations. This is not always the case, and often VMC calculations serve rather as

the starting point for so-called diffusion Monte Carlo calculations (DMC). DMC is a way

of solving exactly the many-body Schrödinger equation by means of a stochastic

procedure. A good guess on the binding energy and its wave function is however

necessary. A carefully performed VMC calculation can aid in this context.
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Quantum Monte Carlo

Construct first a trial wave function ψα
T (R), for a many-body system consisting of

N particles located at positions R = (R1, . . . ,RN). The trial wave function
depends on α variational parameters α = (α1, . . . , αN).

Then we evaluate the expectation value of the hamiltonian H

E [H] = 〈H〉 =

R
dRΨ∗Tα

(R)H(R)ΨTα
(R)R

dRΨ∗Tα
(R)ΨTα

(R)
.

Thereafter we vary α according to some minimization algorithm and return to the
first step.
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Quantum Monte Carlo

Choose a trial wave function ψT (R).

P(R) =
|ψT (R)|2R
|ψT (R)|2 dR

.

This is our new probability distribution function (PDF). The approximation to the
expectation value of the Hamiltonian is now

E [H] ≈
R

dRΨ∗T (R)H(R)ΨT (R)R
dRΨ∗T (R)ΨT (R)

.

Define a new quantity

EL(R) =
1

ψT (R)
HψT (R),

called the local energy, which, together with our trial PDF yields

E [H] = 〈H〉 ≈
Z

P(R)EL(R)dR ≈
1

N

NX
i=1

P(Ri)EL(Ri)

with N being the number of Monte Carlo samples.
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Quantum Monte Carlo

Algo:

Initialisation: Fix the number of Monte Carlo steps. Choose an initial R and
variational parameters α and calculate

˛̨
ψα

T (R)
˛̨2.

Initialise the energy and the variance and start the Monte Carlo calculation
(thermalize)

1 Calculate a trial position Rp = R + r ∗ step where r is a random variable
r ∈ [0, 1].

2 Metropolis algorithm to accept or reject this move

w = P(Rp)/P(R).

3 If the step is accepted, then we set R = Rp . Update averages

Finish and compute final averages.

Observe that the jumping in space is governed by the variable step. Called brute-force

sampling. Need importance sampling.
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Importance Sampling
We need to replace the brute force Metropolis algorithm with a walk in coordinate
space biased by the trial wave function. This approach is based on the Fokker-Planck
equation and the Langevin equation for generating a trajectory in coordinate space.
For a diffusion process characterized by a time-dependent probability density P(x , t) in
one dimension the Fokker-Planck equation reads (for one particle/walker)

∂P

∂t
= D

∂P

∂x

„
∂P

∂x
− F

«
P(x , t),

where F is a drift term and D is the diffusion coefficient. The drift term is

F = 2
1

ΨT
∇ΨT

where ΨT is our trial wave function. The new positions in coordinate space are given
as the solutions of the Langevin equation using Euler’s method, namely, we go from the
Langevin equation

∂x(t)

∂t
= DF (x(t)) + η,

with η a random variable, yielding a new position

y = x + DF (x)∆t + ξ,

where ξ is gaussian random variable and ∆t is a chosen time step.
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Importance Sampling

The Fokker-Planck equation yields a transition probability given by the Green’s function

G(y , x ,∆t) =
1

(4πD∆t)3N/2
exp

“
−(y − x − D∆tF (x))2/4D∆t

”
which in turn means that our brute force Metropolis algorithm

A(y , x) = min(1, q(y , x))),

with q(y , x) = |ΨT (y)|2/|ΨT (x)|2 is now replaced by

q(y , x) =
G(x , y ,∆t)|ΨT (y)|2

G(y , x ,∆t)|ΨT (x)|2
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Quantum Monte Carlo

The radial Schrödinger equation for the hydrogen atom can be written as

−
~2

2m

∂2u(r)

∂r2
−
„

ke2

r
−

~2l(l + 1)

2mr2

«
u(r) = Eu(r),

or with dimensionless variables

−
1

2

∂2u(ρ)

∂ρ2
−

u(ρ)

ρ
+

l(l + 1)

2ρ2
u(ρ)− λu(ρ) = 0,

with the hamiltonian

H = −
1

2

∂2

∂ρ2
−

1

ρ
+

l(l + 1)

2ρ2
.

Use variational parameter α in the trial wave function

uα
T (ρ) = αρe−αρ.
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Quantum Monte Carlo

Inserting this wave function into the expression for the local energy EL gives

EL(ρ) = −
1

ρ
−
α

2

„
α−

2

ρ

«
.

α 〈H〉 σ2 σ/
√

N
7.00000E-01 -4.57759E-01 4.51201E-02 6.71715E-04
8.00000E-01 -4.81461E-01 3.05736E-02 5.52934E-04
9.00000E-01 -4.95899E-01 8.20497E-03 2.86443E-04
1.00000E-00 -5.00000E-01 0.00000E+00 0.00000E+00
1.10000E+00 -4.93738E-01 1.16989E-02 3.42036E-04
1.20000E+00 -4.75563E-01 8.85899E-02 9.41222E-04
1.30000E+00 -4.54341E-01 1.45171E-01 1.20487E-03
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Quantum Monte Carlo

We note that at α = 1 we obtain the exact result, and the variance is zero, as it should.
The reason is that we then have the exact wave function, and the action of the
hamiltionan on the wave function

Hψ = constant× ψ,

yields just a constant. The integral which defines various expectation values involving
moments of the hamiltonian becomes then

〈Hn〉 =

R
dRΨ∗T (R)Hn(R)ΨT (R)R

dRΨ∗T (R)ΨT (R)
= constant×

R
dRΨ∗T (R)ΨT (R)R
dRΨ∗T (R)ΨT (R)

= constant.

This gives an important information: the exact wave function leads to zero

variance! Variation is then performed by minimizing both the energy and the variance.
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Quantum Monte Carlo

The helium atom consists of two electrons and a nucleus with charge Z = 2. The
contribution to the potential energy due to the attraction from the nucleus is

−
2ke2

r1
−

2ke2

r2
,

and if we add the repulsion arising from the two interacting electrons, we obtain the
potential energy

V (r1, r2) = −
2ke2

r1
−

2ke2

r2
+

ke2

r12
,

with the electrons separated at a distance r12 = |r1 − r2|.
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Quantum Monte Carlo

The hamiltonian becomes then

bH = −
~2∇2

1

2m
−

~2∇2
2

2m
−

2ke2

r1
−

2ke2

r2
+

ke2

r12
,

and Schrödingers equation reads bHψ = Eψ.

All observables are evaluated with respect to the probability distribution

P(R) =
|ψT (R)|2R
|ψT (R)|2 dR

.

generated by the trial wave function. The trial wave function must approximate an exact

eigenstate in order that accurate results are to be obtained. Improved trial wave

functions also improve the importance sampling, reducing the cost of obtaining a

certain statistical accuracy.
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Quantum Monte Carlo

Choice of trial wave function for Helium: Assume r1 → 0.

EL(R) =
1

ψT (R)
HψT (R) =

1

ψT (R)

„
−

1

2
∇2

1 −
Z

r1

«
ψT (R) + finite terms.

EL(R) =
1

RT (r1)

 
−

1

2

d2

dr2
1

−
1

r1

d

dr1
−

Z

r1

!
RT (r1) + finite terms

For small values of r1, the terms which dominate are

lim
r1→0

EL(R) =
1

RT (r1)

„
−

1

r1

d

dr1
−

Z

r1

«
RT (r1),

since the second derivative does not diverge due to the finiteness of Ψ at the origin.
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Quantum Monte Carlo

This results in
1

RT (r1)

dRT (r1)

dr1
= −Z ,

and
RT (r1) ∝ e−Zr1 .

A similar condition applies to electron 2 as well. For orbital momenta l > 0 we have

1

RT (r)

dRT (r)

dr
= −

Z

l + 1
.

Similalry, studying the case r12 → 0 we can write a possible trial wave function as

ψT (R) = e−α(r1+r2)er12/2.

The last equation can be generalized to

ψT (R) = φ(r1)φ(r2) . . . φ(rN)
Y
i<j

f (rij ),

for a system with N electrons or particles.
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Diffusion Monte Carlo

Choose τ = it/~. The time-dependent Schrödinger equation becomes then

∂Ψ(x , τ)

∂τ
=

~2

2m

∂2Ψ(x , τ)

∂x2

Diffusion constant

D =
~2

2m

Can solve this equation with a random walk algorithm for the above diffusion equation.
What happens with an interaction term?

∂Ψ(x , τ)

∂τ
=

~2

2m

∂2Ψ(x , τ)

∂x2
− V (x)Ψ(x , τ)
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Diffusion Monte Carlo

Without the kinetic energy term we have

∂Ψ(x , τ)

∂τ
= −V (x)Ψ(x , τ)

which is the same as a decay or growth process (depending on the sign of V ). We can

obtain the solution to this first-order differential equation by replacing it by a random

decay or growth process. We can thus interpret the full SE as a combination of

diffusion and branching processes. For the latter, the number of random walkers at a

point x depends on the sign of V (x).
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Diffusion Monte Carlo

A crucial aspect (which leads to the Monte Carlo sign problem for Fermions, particles
with half-integer angular momentum) is that the probability distribution is no longer

P(x , τ) = Ψ∗(x , τ)Ψ(x , τ)dx

but
P(x , τ) = Ψ(x , τ)dx

Ψ must be nonnegative! It is related to distribution of walkers.
The general solution to SE

Ψ(x , τ) =
X

n

cnφn(x)e−Enτ

For sufficiently large τ the dominant term becomes the eigenvalue with lowest energy

Ψ(x , τ →∞) = c0φ0(x)e−E0τ
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Diffusion Monte Carlo

Note

Spatial dependence of Ψ(x , τ →∞) proportional to φ0

The population of walkers will however decay to zero unless E0 = 0!

Can avoid this problem by introducing an arbitrary reference energy Vref, which is
adjusted so that an approximate steady state distribution of random walkers is
obtained.

We obtain then

∂Ψ(x , τ)

∂τ
=

~2

2m

∂2Ψ(x , τ)

∂x2
− [V (x)− Vref] Ψ(x , τ),

and
Ψ(x , τ) ≈ c0φ0(x)e−(E0−Vref)τ
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Diffusion Monte Carlo

The DMC method is based on rewriting the SE in imaginary time, by defining τ = it .
The imaginary time SE is then

∂ψ

∂τ
= −bHψ.

The wave function ψ is again expanded in eigenstates of the Hamiltonian

ψ =
∞X
i

ciφi ,

where bHφi = εiφi ,

εi being an eigenstate of bH. A formal solution of the imaginary time Schrödinger
equation is

ψ(τ1 + δτ) = e−
bHδτψ(τ1).
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Diffusion Monte Carlo

The DMC equation reads

−
∂ψ(R, τ)
∂τ

=

24 NX
i

−
1

2
∇2

i ψ(R, τ)

35+ (V (R)− ET )ψ(R).

This equation is a diffusion equation where the wave function ψ may be interpreted as

the density of diffusing particles (or “walkers”), and the term V (R)− ET is a rate term

describing a potential-dependent increase or decrease in the particle density. The

above equation may be transformed into a form suitable for Monte Carlo methods, but

this leads to a very inefficient algorithm. The potential V (R) is unbounded in e.g.,

atomic systems and hence the rate term V (R)− ET can diverge. Large fluctuations in

the particle density then result and give impractically large statistical errors.
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Diffusion Monte Carlo

These fluctuations may be substantially reduced by the incorporation of importance
sampling in the algorithm. Importance sampling is essential for DMC methods, if the
simulation is to be efficient. A trial or guiding wave function ψT (R), which closely
approximates the ground state wave function is introduced.
For the trial wave function and energy, one typically uses the results from a as best as
possible VMC calculation. A new distribution is defined as

f (R, τ) = ψT (R)ψ(R, τ),

which is also a solution of the SE when ψ(R, τ) is a solution. Modified to

∂f (R, τ)
∂τ

=
1

2
∇ [∇− F (R)] f (R, τ) + (EL(R)− ET )f (R, τ).
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Diffusion Monte Carlo

In this equation we have introduced the so-called force-term F , given by

F (R) =
2∇ψT (R)

ψT (R)
,

and is commonly referred to as the “quantum force”. The local energy EL is defined as
previously

ELR) = −
1

ψT (R)

∇2ψT (R)

2
+ V (R),

and is computed, as in the VMC method, with respect to the trial wave function.
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Diffusion Monte Carlo

We can give the following interpretation. The right hand side of the importance

sampled DMC equation consists, from left to right, of diffusion, drift and rate terms. The

problematic potential dependent rate term of the non-importance sampled method is

replaced by a term dependent on the difference between the local energy of the

guiding wave function and the trial energy. The trial energy is initially chosen to be the

VMC energy of the trial wave function, and is updated as the simulation progresses.

Use of an optimised trial function minimises the difference between the local and trial

energies, and hence minimises fluctuations in the distribution f .
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DMC

Our previous Green’s function, (the diffusion part only)

GDiff (y , x ,∆t) =
1

(4πD∆t)3N/2
exp

“
−(y − x − D∆tF (x))2/4D∆t

”
is replaced by a diffusion piece and a branching part

GB(y , x ,∆t) = exp
„
−
»

1

2
(EL(y) + EL(x))− ET

–
∆t
«

yielding
GDMC(y , x ,∆t) ≈ GDiff (y , x ,∆t)GB(y , x ,∆t)

with EL being the local energy and ET our trial energy. The Metropolis algorithm is still

A(y , x) = min(1, q(y , x))),

with

q(y , x) =
GDMC(x , y ,∆t)|ΨT (y)|2

GDMC(y , x ,∆t)|ΨT (x)|2
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Applications: Bose-Einstein Condensation
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Energy evolution of the ground state and an excited vortex
state. See Jon Nilsen’s article at
http://xxx.lanl.gov/abs/physics/0609191 . A very
interesting usage of Python in parallelizing Diffusion Monte
Carlo codes.
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Statistical Physics

Microcanonical Canonical Grand canonical Pressure canonical

Exchange of heat no yes yes yes
with the environment

Exchange of particles no no yes no
with the environemt

Thermodynamical V ,M,D V ,M,D V ,M,D P,H, E
parameters E T T T

N N µ N

Potential Entropy Helmholtz PV Gibbs

Energy Internal Internal Internal Enthalpy
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Canonical Ensemble

Helmholtz Free Energy
F = −kBTlnZ =< E > −TS

What is the free energy?
dF = −SdT − pdV + µdN

Entropy

S = kB lnZ + kBT
„
∂lnZ

∂T

«
N,V

Pressure

p = kBT
„
∂lnZ

∂V

«
N,T

Chemical Potential

µ = −kBT
„
∂lnZ

∂N

«
V ,T

Energy (internal only)

E = kBT 2
„
∂lnZ

∂T

«
V ,N
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Expectation Values

At a given temperature we have the probability distribution

Pi (β) =
e−βEi

Z

with β = 1/kT being the inverse temperature, k the Boltzmann constant, Ei is the
energy of a state i while Z is the partition function for the canonical ensemble defined
as

Z =
MX

i=1

e−βEi ,

where the sum extends over all states M. Pi expresses the probability of finding the

system in a given configuration i .
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Expectation Values

For a system described by the canonical ensemble, the energy is an expectation value
since we allow energy to be exchanged with the surroundings (a heat bath with
temperature T ). This expectation value, the mean energy, can be calculated using the
probability distribution Pi as

〈E〉 =
MX

i=1

Ei Pi (β) =
1

Z

MX
i=1

Ei e
−βEi ,

with a corresponding variance defined as

σ2
E = 〈E2〉 − 〈E〉2 =

1

Z

MX
i=1

E2
i e−βEi −

0@ 1

Z

MX
i=1

Ei e
−βEi

1A2

.

If we divide the latter quantity with kT 2 we obtain the specific heat at constant volume

CV =
1

kT 2

“
〈E2〉 − 〈E〉2

”
.
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Expectation Values

We can also write

〈E〉 = −
∂lnZ

∂β
.

The specific heat is

CV =
1

kT 2

∂2lnZ

∂β2

These expressions link a physical quantity (in thermodynamics) with the microphysics

given by the partition function. Statistical physics is the field where one relates

microscopic quantities to observables at finite temperature.
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Expectation Values

〈M〉 =
MX
i

Mi Pi (β) =
1

Z

MX
i

Mi e
−βEi ,

and the corresponding variance

σ2
M = 〈M2〉 − 〈M〉2 =

1

Z

MX
i=1

M2
i e−βEi −

0@ 1

Z

MX
i=1

Mi e
−βEi

1A2

.

This quantity defines also the susceptibility χ

χ =
1

kT

“
〈M2〉 − 〈M〉2

”
.
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Phase Transitions

NOTE: Helmholtz free energy and canonical ensemble

F = 〈E〉 − TS = −kTlnZ

meaning lnZ = −F/kT = −Fβ and

〈E〉 = −
∂lnZ

∂β
=
∂(βF )

∂β
.

and

CV = −
1

kT 2

∂2(βF )

∂β2
.

We can relate observables to various derivatives of the partition function and the free

energy. When a given derivative of the free energy or the partition function is

discontinuous or diverges (logarithmic divergence for the heat capacity from the Ising

model) we talk of a phase transition of order of the derivative.
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Phase Transitions

An important quantity is the correlation length (ξ, to be discussed during friday’s
lecture). The correlation length defines the length scale at which the overall
properties of a material start to differ from its bulk properties. It is the distance
over which the fluctuations of the microscopic degrees of freedom (for example
the position of atoms) are significantly correlated with each other. Usually it is of
the order of few interatomic spacings for a solid.

The correlation length ξ depends however on external conditions such as
pressure and temperature.

A phase transition is marked by abrupt macroscopic changes as external
parameters are changed, such as an increase of temperature.

The point where a phase transition takes place is called a critical point.
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Two Scenarios for Phase Transitions

1 First order/discontinuous phase transitions: Two or more states on either side of
the critical point also coexist exactly at the critical point. As we pass through the
critical point we observe a discontinuous behavior of thermodynamical functions,
see figure in forthcoming slides. The correlation length is mormally finite at the
critical point. Phenomena such as hysteris occur, viz. there is a continuation of
state below the critical point into one above the critical point. This continuation is
metastable so that the system may take a macroscopically long time to readjust.
Classical example, melting of ice.

2 Second order or continuous transitions: The correlation length diverges at the
critical point, fluctuations are correlated over all distance scales, which forces the
system to be in a unique critical phase. The two phases on either side of the
critical point become identical. Smooth behavior of first derivatives of the
partition function, while second derivatives diverge. Strong correlations make a
perturbative treatment impossible. Renormalization group theory.
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Examples of Phase Transitions

System Transition Order Parameter

Liquid-gas Condensation/evaporation Density difference ∆ρ = ρliquid − ρgas
Binary liquid mixture/Unmixing Composition difference

Quantum liquid Normal fluid/superfluid < φ >, ψ = wavefunction
Liquid-solid Melting/crystallisation Reciprocal lattice vector

Magnetic solid Ferromagnetic Spontaneous magnetisation M
Antiferromagnetic Sublattice magnetisation M

Dielectric solid Ferroelectric Polarization P
Antiferroelectric Sublattice polarisation P
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Examples of Phase Transitions
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Ising and Potts Model

The model we will employ in our studies of phase transitions at finite temperature for
magnetic systems is the so-called Ising model. In its simplest form the energy is
expressed as

E = −J
NX

<kl>

sk sl − B
NX
k

sk ,

with sk = ±1, N is the total number of spins, J is a coupling constant expressing the

strength of the interaction between neighboring spins and B is an external magnetic

field interacting with the magnetic moment set up by the spins. The symbol < kl >

indicates that we sum over nearest neighbors only.
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Ising Model

Notice that for J > 0 it is energetically favorable for neighboring spins to be aligned.

This feature leads to, at low enough temperatures, to a cooperative phenomenon called

spontaneous magnetization. That is, through interactions between nearest neighbors,

a given magnetic moment can influence the alignment of spins that are separated from

the given spin by a macroscopic distance. These long range correlations between

spins are associated with a long-range order in which the lattice has a net

magnetization in the absence of a magnetic field. This phase is normally called the

ferromagnetic phase. With J < 0, we have a so-called antiferromagnetic case. At a

critical temperature we have a phase transition to a disordered phase, a so-called

paramagnetic phase.
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Potts Model

Another popular set of models are the so-called Potts models. The energy is given by

E = −J
NX

<kl>

δsl ,sk ,

where the spin sk at lattice position k can take the values 1, 2, . . . , q. N is the total
number of spins. For q = 2 the Potts model corresponds to the Ising model, we can
rewrite the last equation as

E = −
J

2

NX
<kl>

2(δsl ,sk −
1

2
)−

NX
<kl>

J

2
.

Now, 2(δsl ,sk −
1
2 ) is +1 when sl = sk and −1 when they are different. Equivalent

except the last term which is a constant and that J → J/2.
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Analytic Results: two-dimensional Ising model

The analytic expression for the Ising model in two dimensions was obtained in 1944 by
the Norwegian chemist Lars Onsager (Nobel prize in chemistry). He obtained analytic
results for the partition function and various expectations values.
The specific heat is given by

CV =
4kB

π
(βJcoth(2βJ))2

n
K1(q)− K2(q)− (1− tanh2(2βJ))

hπ
2

+ (2tanh2(2βJ)− 1)K1(q)
io
,

with

K2(q) =

Z π/2

0
dφ
q

1− q2sin2φ.

is the complete elliptic integral of the second kind. Near the critical temperature TC the
specific heat behaves as

CV ≈ −
2

kBπ

„
J

TC

«2

ln

˛̨̨̨
1−

T

TC

˛̨̨̨
+ const.

First National Winter School in eScience Lectures IV & V, January 30



Repetition QMC StatPhys Sociology

Analytic Results: two-dimensional Ising model

In theories of critical phenomena one has that

CV ∼
˛̨̨̨
1−

T

TC

˛̨̨̨−α

,

and Onsager’s result is a special case of this power law behavior. The limiting form of
the function

limα→0
1

α
(Y−α − 1) = −lnY ,

meaning that the analytic result is a special case of the power law singularity with

α = 0.
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Analytic Results: two-dimensional Ising model

One can also show that the mean magnetization per spin is

»
1−

(1− tanh2(βJ))4

16tanh4(βJ)

–1/8

for T < TC and 0 for T > TC . The behavior is thus as T → TC from below

M(T ) ∼ (TC − T )1/8

The susceptibility behaves as

χ(T ) ∼ |TC − T |−7/4
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Correlation Length

Another quantity (given by the covariance) is the correlation function (defined in friday’s
lecture)

Gij = 〈Si Sj 〉 − 〈Si 〉〈Sj 〉.

and the correlation length

ξ−1 = − lim
r→∞

∂

∂r
lnG(r),

with r = |i − j|.
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Scaling Results

Near TC we can characterize the behavior of many physical quantities by a power law
behavior. As an example, the mean magnetization is given by

〈M(T )〉 ∼ (T − TC)β ,

where β is a so-called critical exponent. A similar relation applies to the heat capacity

CV (T ) ∼ |TC − T |−α ,

the susceptibility
χ(T ) ∼ |TC − T |γ .

and the correlation length
ξ(T ) ∼ |TC − T |−ν .

α = 0, β = 1/8, γ = 7/4 and ν = 1. Later we will derive these coefficients from finite

size scaling theories.
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Scaling Results

Through finite size scaling relations it is possible to relate the behavior at finite lattices
with the results for an infinitely large lattice. The critical temperature scales then as

TC(L)− TC(L = ∞) ∼ aL−1/ν ,

〈M(T )〉 ∼ (T − TC)β → L−β/ν ,

CV (T ) ∼ |TC − T |−γ → Lγ/ν ,

and
χ(T ) ∼ |TC − T |−α → Lα/ν .

We can compute the slope of the curves for M, CV and χ as function of lattice sites

and extract the exponent ν.
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Modelling the Ising Model

The code uses periodic boundary conditions with energy

Ei = −J
NX

j=1

sj sj+1,

In our case we have as the Monte Carlo sampling function the probability for finding the
system in a state s given by

Ps =
e−(βEs)

Z
,

with energy Es , β = 1/kT and Z is a normalization constant which defines the partition
function in the canonical ensemble

Z (β) =
X

s

e−(βEs)

This is difficult to compute since we need all states. In a calculation of the Ising model

in two dimensions, the number of configurations is given by 2N with N = L× L the

number of spins for a lattice of length L. Fortunately, the Metropolis algorithm considers

only ratios between probabilities and we do not need to compute the partition function

at all.
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Metropolis Algorithm

1 Establish an initial state with energy Eb by positioning yourself at a random
position in the lattice

2 Change the initial configuration by flipping e.g., one spin only. Compute the
energy of this trial state Et .

3 Calculate ∆E = Et − Eb . The number of values ∆E is limited to five for the Ising
model in two dimensions, see the discussion below.

4 If ∆E ≤ 0 we accept the new configuration, meaning that the energy is lowered
and we are hopefully moving towards the energy minimum at a given
temperature. Go to step 7.

5 If ∆E > 0, calculate w = e−(β∆E).

6 Compare w with a random number r . If

r ≤ w ,

then accept the new configuration, else we keep the old configuration and its
values.

7 The next step is to update various expectations values.

8 The steps (2)-(7) are then repeated in order to obtain a sufficently good
representation of states.
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Modelling the Ising Model

In the calculation of the energy difference from one spin configuration to the other, we
will limit the change to the flipping of one spin only. For the Ising model in two
dimensions it means that there will only be a limited set of values for ∆E . Actually,
there are only five possible values. To see this, select first a random spin position x , y
and assume that this spin and its nearest neighbors are all pointing up. The energy for
this configuration is E = −4J. Now we flip this spin as shown below. The energy of the
new configuration is E = 4J, yielding ∆E = 8J.

E = −4J
↑

↑ ↑ ↑
↑

=⇒ E = 4J
↑

↑ ↓ ↑
↑
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Modelling the Ising Model

The four other possibilities are as follows

E = −2J
↑

↓ ↑ ↑
↑

=⇒ E = 2J
↑

↓ ↓ ↑
↑

with ∆E = 4J,

E = 0
↑

↓ ↑ ↑
↓

=⇒ E = 0
↑

↓ ↓ ↑
↓

with ∆E = 0
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Modelling the Ising Model

E = 2J
↓

↓ ↑ ↑
↓

=⇒ E = −2J
↓

↓ ↓ ↑
↓

with ∆E = −4J and finally

E = 4J
↓

↓ ↑ ↓
↓

=⇒ E = −4J
↓

↓ ↓ ↓
↓

with ∆E = −8J. This means in turn that we could construct an array which contains all

values of eβ∆E before doing the Metropolis sampling. Else, we would have to evaluate

the exponential at each Monte Carlo sampling.
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The loop over T in main

for ( double temp = initial_temp; temp <= final_temp; temp+=temp_step){
// initialise energy and magnetization
E = M = 0.;
// setup array for possible energy changes
for( int de =-8; de <= 8; de++) w[de] = 0;
for( int de =-8; de <= 8; de+=4) w[de+8] = exp(-de/temp);
// initialise array for expectation values
for( int i = 0; i < 5; i++) average[i] = 0.;
initialize(n_spins, temp, spin_matrix, E, M);
// start Monte Carlo computation
for (int cycles = 1; cycles <= mcs; cycles++){

Metropolis(n_spins, idum, spin_matrix, E, M, w);
// update expectation values
average[0] += E; average[1] += E*E;
average[2] += M; average[3] += M*M; average[4] += fabs(M);

}
// print results
output(n_spins, mcs, temp, average);

}
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The Metropolis function

// loop over all spins
for(int y =0; y < n_spins; y++) {

for (int x= 0; x < n_spins; x++){
int ix = (int) (ran1(&idum)*(double)n_spins); // RANDOM SPIN
int iy = (int) (ran1(&idum)*(double)n_spins); // RANDOM SPIN
int deltaE = 2*spin_matrix[iy][ix]*

(spin_matrix[iy][periodic(ix,n_spins,-1)]+
spin_matrix[periodic(iy,n_spins,-1)][ix] +
spin_matrix[iy][periodic(ix,n_spins,1)] +
spin_matrix[periodic(iy,n_spins,1)][ix]);

if ( ran1(&idum) <= w[deltaE+8] ) {
spin_matrix[iy][ix] *= -1; // flip one spin and accept new spin config

M += (double) 2*spin_matrix[iy][ix];
E += (double) deltaE;

}
}

}
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Computational Sociophysics
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B. Latané, Am. Psychologist 36, 343 (1981).

J. A. Hołyst, K. Kacperski and F. Schweitzer, in Annual Reviews of Computational
Physics, vol. 9, D. Stauffer ed., World Scientific, 253 (2001).

K. Sznajd-Weron, and J. Sznajd, Int. J. Mod. Phys. C 11, 1157 (2000).

P.I. Krapivsky and S. Redner, Phys. Rev. Lett. 90, 238701 (2003). L.R. Fontes,
R.H. Schonmann and V. Sidoravicius, Comm. Math. Phys. 228, 495 (2002). F. Wu
and B. Huberman, cond-mat/0407252 at www.arXiv.org. C. Castellano, D. Vilone
and A. Vespignani, Europhys. Lett. 63, 153 (2003).

S. Fortunato and D. Stauffer, in Extreme Events in Nature and Society, S.
Albeverio, V. Jentsch and H. Kantz eds., Springer Verlag, Berlin-Heidelberg
(2005).

R. Albert and A-L. Barabasi, Rev. Mod. Phys. 74, 47 (2002).

First National Winter School in eScience Lectures IV & V, January 30



Repetition QMC StatPhys Sociology

Monte Carlo Simulations of Opinion Dynamics

Statistical physics teaches us that, even when it is impossible to foresee what a single
particle will do, one can often predict how a sufficiently large number of particles will
behave, in spite of the eventually large differences between the variables describing
the state of the individual particles.
This principle holds, to some extent, for human societies too. It is nearly impossible to
predict when one person will die, as death depends on many factors, most of which are
hard to control: nevertheless statistics of the mortality rates of large populations are
stable for long times and have been studied for over three centuries.
Crucial question:

Can one describe social behaviour through statistical physics?
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Monte Carlo Simulations of Opinion Dynamics

Early mathematical models of opinion dynamics date back to the 50’s, but the starting

point for quantitative investigations in this direction is marked by the theory of social

impact proposed by Bibb Latané. The impact is a measure of the influence exerted on

a single individual by those agents which interact with him/her (social neighbours).

Models based on social impact[3] were among the first microscopic models of opinion

dynamics. They are basically cellular automata, where one starts by assigning, usually

at random, a set of numbers to any of the N agents of a community. One of these

numbers is the opinion, the others describe specific features of the agents, like

persuasiveness, supportiveness, tolerance, etc. Society is modelled as a graph, and

each agent interacts with its geometric neighbours, which represent friends or close

relatives.
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Monte Carlo Simulations of Opinion Dynamics

The procedure is iterative: at each iteration one takes a set of interacting agents and

updates their opinions (or just the opinion of a single agent), according to a simple

dynamical rule. After many iterations, the system usually reaches a state of static or

dynamic equilibrium, where the distribution of the opinions among the agents does not

change shape, even if the agents themselves still change their mind. The dynamics

usually favours the agreement of groups of agents about the same opinion, so that one

ends up with just a few opinions in the final state. In particular it is possible that all

agents share the same opinion (consensus), or that they split in two or more factions.
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The Sznajd Model (SM)

The SM is probably the most studied consensus model of the last years. The reasons

of its success are the intuitive “convincing rule” and the deep relationship with spin

models like Ising. One starts with a simple remark: an individual is more easily

convinced to change its mind if more than just a single person try to persuade him/her.

So, if two or more of our friends share the same view about some issue, it is likely that

they will convince us to accept that view, sooner or later.
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The Sznajd Model

In the most common implementation of the model, a group of neighbouring agents

which happen to share the same opinion imposes this opinion to all their neighbours.

The “convincing” pool of friends can be a pair of nearest-neighbours on a graph, or

groups of three or more neighbours like triads on networks or plaquettes on a lattice.

One usually starts from a random distribution of opinions among the agents, with a

fraction p of agents sharing the opinion +1 (the rest of the agents having opinion −1).

In the absence of perturbing factors like noise, the state of the system always

converges towards consensus and a phase transition is observed as a function of the

initial concentration p: for p < 1/2 (> 1/2) all agents end up with opinion −1 (+1).
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The Sznajd Model

Since the original formulation of the model of the Sznajds, for a one-dimensional chain
of agents, countless refinements have been made, which concern the type of graph,
the updating rule, the introduction of external factors like a social temperature,
advertising and ageing, etc. (for more details see the reference list).

The Sznajd dynamics has been used to devise simple election models which

reproduce the bulk behaviour of votes distributions of real elections, see the example

on the next slide.
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Brazilian Election
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The Sznajd Model

Histogram of the fraction of
candidates receiving a given
number of votes for 1998
election in the state of Minas
Gerais (Brazil). A simple
election model based on Sznajd
opinion dynamics reproduces
well the central pattern of the
data. The data points are
indicated by ×, the results of the
election model by +.
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