
Overview MPI Programming DD

High-performance computing
on distributed-memory architecture

Xing Cai

Simula Research Laboratory

Dept. of Informatics, University of Oslo

Winter School on Parallel Computing
Geilo

January 20–25, 2008

X. Cai HPC on distributed memory



Overview MPI Programming DD

Outline

1 Overview of HPC
2 Introduction to MPI
3 Programming examples
4 High-level parallelization via DD

X. Cai HPC on distributed memory



Overview MPI Programming DD

List of Topics

1 Overview of HPC

2 Introduction to MPI

3 Programming examples

4 High-level parallelization via DD

X. Cai HPC on distributed memory



Overview MPI Programming DD

Motivation

Nowadays, HPC refers to the use of parallel computers

Memory performance is the No.1 limiting factor for scientific
computing

size
speed

Most parallel platforms have some level of distributed memory

distributed-memory MPP systems (tightly integrated)
commodity clusters
constellations

Good utilization of distributed memory requires appropriate
parallel algorithms and matching implementation

In this lecture, we will focus on distribued memory

X. Cai HPC on distributed memory



Overview MPI Programming DD

Architecture development of Top500 list

http://www.top500.org

X. Cai HPC on distributed memory



Overview MPI Programming DD

Distributed memory

A schematic view of distributed memory

Plot obtained from https://computing.llnl.gov/tutorials/parallel comp/

X. Cai HPC on distributed memory



Overview MPI Programming DD

Hybrid distributed-shared memory

A schematic view of hybrid distributed-shared memory

Plot obtained from https://computing.llnl.gov/tutorials/parallel comp/

X. Cai HPC on distributed memory



Overview MPI Programming DD

Main features of distributed memory

Individual memory units share no physical storage

Exchange of info is through explicit communication

Messing passing is the de-facto programming style for
distributed memory

A programmer is often responsible for many details

identification of parallelism
design of parallel algorithm and data structure
breakup of tasks/data/subdomains
load balancing
insertion of communication commands

X. Cai HPC on distributed memory



Overview MPI Programming DD

List of Topics

1 Overview of HPC

2 Introduction to MPI

3 Programming examples

4 High-level parallelization via DD

X. Cai HPC on distributed memory



Overview MPI Programming DD

MPI (message passing interface)

MPI is a library standard for programming distributed memory

MPI implementation(s) available on almost every major
parallel platform (also on shared-memory machines)

Portability, good performance & functionality

Collaborative computing by a group of individual processes

Each process has its own local memory

Explicit message passing enables information exchange and
collaboration between processes

More info: http://www-unix.mcs.anl.gov/mpi/

X. Cai HPC on distributed memory



Overview MPI Programming DD

MPI basics

The MPI specification is a combination of MPI-1 and MPI-2

MPI-1 defines a collection of 120+ commands

MPI-2 is an extension of MPI-1 to handle ”difficult” issues

MPI has language bindings for F77, C and C++

There also exist, e.g., several MPI modules in Python (more
user-friendly)

Knowledge of entire MPI is not necessary

X. Cai HPC on distributed memory



Overview MPI Programming DD

MPI language bindings

C binding

#include <mpi.h>

rc = MPI_Xxxxx(parameter, ... )

Fortran binding

include ’mpif.h’

CALL MPI_XXXXX(parameter,..., ierr)

X. Cai HPC on distributed memory



Overview MPI Programming DD

MPI communicator

An MPI communicator: a ”communication universe” for a
group of processes

MPI COMM WORLD – name of the default MPI communicator,
i.e., the collection of all processes

Each process in a communicator is identified by its rank

Almost every MPI command needs to provide a communicator
as input argument

X. Cai HPC on distributed memory



Overview MPI Programming DD

MPI process rank

Each process has a unique rank, i.e. an integer identifier,
within a communicator

The rank value is between 0 and #procs-1

The rank value is used to distinguish one process from another

Commands MPI Comm size & MPI Comm rank are very useful

Example

int size, my_rank;

MPI_Comm_size (MPI_COMM_WORLD, &size);

MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

if (my_rank==0) {

...

}

X. Cai HPC on distributed memory



Overview MPI Programming DD

MPI ”Hello-world” example

#include <stdio.h>
#include <mpi.h>

int main (int nargs, char** args)
{
int size, my_rank;
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
printf("Hello world, I’ve rank %d out of %d procs.\n",

my_rank,size);
MPI_Finalize ();
return 0;

}

X. Cai HPC on distributed memory



Overview MPI Programming DD

MPI ”Hello-world” example (cont’d)

Compilation example: mpicc hello.c

Parallel execution example: mpirun -np 4 a.out

Order of output from the processes is not determined, may
vary from execution to execution

Hello world, I’ve rank 2 out of 4 procs.
Hello world, I’ve rank 1 out of 4 procs.
Hello world, I’ve rank 3 out of 4 procs.
Hello world, I’ve rank 0 out of 4 procs.

X. Cai HPC on distributed memory



Overview MPI Programming DD

The mental picture of parallel execution

The same MPI program is executed concurrently on each process

#in
lude <stdio.h>#in
lude <mpi.h>int main (int nargs, 
har** args){ int size, my_rank;MPI_Init (&nargs, &args);MPI_Comm_size (MPI_COMM_WORLD, &size);MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);printf("Hello world, I've rank %d out of %d pro
s.\n",my_rank,size);MPI_Finalize ();return 0;}

#in
lude <stdio.h>#in
lude <mpi.h>int main (int nargs, 
har** args){ int size, my_rank;MPI_Init (&nargs, &args);MPI_Comm_size (MPI_COMM_WORLD, &size);MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);printf("Hello world, I've rank %d out of %d pro
s.\n",my_rank,size);MPI_Finalize ();return 0;}

#in
lude <stdio.h>#in
lude <mpi.h>int main (int nargs, 
har** args){ int size, my_rank;MPI_Init (&nargs, &args);MPI_Comm_size (MPI_COMM_WORLD, &size);MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);printf("Hello world, I've rank %d out of %d pro
s.\n",my_rank,size);MPI_Finalize ();return 0;}

Process 0 Process 1 Process P-1· · ·

X. Cai HPC on distributed memory



Overview MPI Programming DD

MPI point-to-point communication

Participation of two different processes

Several different types of send and receive commands

Blocking/non-blocking send
Blocking/non-blocking receive
Four modes of send operations
Combined send/receive

X. Cai HPC on distributed memory



Overview MPI Programming DD

Standard MPI send/MPI recv

To send a message

int MPI_Send(void *buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm);

To receive a message

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm,

MPI_Status *status);

An MPI message is an array of data elements ”inside an
envelope”

Data: start address of the message buffer, counter of elements
in the buffer, data type
Envelope: source/destination process, message tag,
communicator

X. Cai HPC on distributed memory



Overview MPI Programming DD

Example of MPI send/MPI recv

#include <stdio.h>
#include <mpi.h>

int main (int nargs, char** args)
{
int size, my_rank, flag;
MPI_Status status;
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

if (my_rank>0)
MPI_Recv (&flag, 1, MPI_INT,

my_rank-1, 100, MPI_COMM_WORLD, &status);

printf("Hello world, I’ve rank %d out of %d procs.\n",my_rank,size);

if (my_rank<size-1)
MPI_Send (&my_rank, 1, MPI_INT,

my_rank+1, 100, MPI_COMM_WORLD);

MPI_Finalize ();
return 0;

X. Cai HPC on distributed memory



Overview MPI Programming DD

Example of MPI send/MPI recv (cont´d)

#in
lude <stdio.h>#in
lude <mpi.h>int main (int nargs, 
har** args){ int size, my_rank, flag;MPI_Status status;MPI_Init (&nargs, &args);MPI_Comm_size (MPI_COMM_WORLD, &size);MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);if (my_rank>0)MPI_Re
v (&flag, 1, MPI_INT,my_rank-1, 100, MPI_COMM_WORLD, &status);printf("Hello world, I've rank %d out of %d pro
s.\n",my_rank,size);if (my_rank<size-1)MPI_Send (&my_rank, 1, MPI_INT,my_rank+1, 100, MPI_COMM_WORLD);MPI_Finalize ();return 0;}

#in
lude <stdio.h>#in
lude <mpi.h>int main (int nargs, 
har** args){ int size, my_rank, flag;MPI_Status status;MPI_Init (&nargs, &args);MPI_Comm_size (MPI_COMM_WORLD, &size);MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);if (my_rank>0)MPI_Re
v (&flag, 1, MPI_INT,my_rank-1, 100, MPI_COMM_WORLD, &status);printf("Hello world, I've rank %d out of %d pro
s.\n",my_rank,size);if (my_rank<size-1)MPI_Send (&my_rank, 1, MPI_INT,my_rank+1, 100, MPI_COMM_WORLD);MPI_Finalize ();return 0;}

#in
lude <stdio.h>#in
lude <mpi.h>int main (int nargs, 
har** args){ int size, my_rank, flag;MPI_Status status;MPI_Init (&nargs, &args);MPI_Comm_size (MPI_COMM_WORLD, &size);MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);if (my_rank>0)MPI_Re
v (&flag, 1, MPI_INT,my_rank-1, 100, MPI_COMM_WORLD, &status);printf("Hello world, I've rank %d out of %d pro
s.\n",my_rank,size);if (my_rank<size-1)MPI_Send (&my_rank, 1, MPI_INT,my_rank+1, 100, MPI_COMM_WORLD);MPI_Finalize ();return 0;}

Process 0 Process 1 Process P-1· · ·

�
�

�
��*

�
�

�
��*

Enforcement of ordered output by passing around a
”semaphore”, using MPI send and MPI recv

Successful message passover requires a matching pair of
MPI send and MPI recv

X. Cai HPC on distributed memory



Overview MPI Programming DD

MPI collective communication

A collective operation involves all the processes in a communicator:
(1) synchronization (2) data movement (3) collective computation

A0 A0

A0

A0

A0

one-to-all broadcast

MPI_BCAST

data
processes

A0 A1 A2 A3 A0

A1

A2

A3

one-to-all scatter

MPI_SCATTER

A0 A1 A2 A3A0

A1

A2

A3

all-to-one gather

MPI_GATHER

X. Cai HPC on distributed memory



Overview MPI Programming DD

Collective communication (cont´d)

1316

0 2

0 2 0 2 0 2 0 2

- - - - - -

- - - - - -

MPI_REDUCE   with   MPI_SUM,  root = 1 :

MPI_ALLREDUCE  with   MPI_MIN:

MPI_REDUCE   with   MPI_MIN,  root = 0 :

2 4 5 7 6 20 3

0 1 2 3

Initial
Data :

Processes . . .

X. Cai HPC on distributed memory



Overview MPI Programming DD

MPI example of collective communication

Inner-product between two vectors: c =
∑n

i=1 a(i)b(i)

MPI_Comm_size (MPI_COMM_WORLD, &num_procs);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

my_start = n/num_procs*my_rank;
my_stop = n/num_procs*(my_rank+1);

my_c = 0.;
for (i=my_start; i<my_stop; i++)
my_c = my_c + (a[i] * b[i]);

MPI_Allreduce (&my_c, &c, 1, MPI_DOUBLE,
MPI_SUM, MPI_COMM_WORLD);

X. Cai HPC on distributed memory



Overview MPI Programming DD

List of Topics

1 Overview of HPC

2 Introduction to MPI

3 Programming examples

4 High-level parallelization via DD

X. Cai HPC on distributed memory



Overview MPI Programming DD

Parallel programming overview

Decide a ”breakup” of the global problem

functional decomposition – a set of concurrent tasks
data parallelism – sub-arrays, sub-loops, sub-domains

Choose a parallel algorithm (e.g. based on modifying a serial
algorithm)

Design local data structure, if needed

Standard serial programming plus insertion of MPI calls

X. Cai HPC on distributed memory



Overview MPI Programming DD

Calculation of π

Want to numerically approximate the value of π

Area of a circle: A = πR2

Area of the largest circle that fits into the unit square: π

4
,

because R = 1
2

Estimate of the area of the circle ⇒ estimate of π

How?

Throw a number of random points into the unit square
Count the percentage of points that lie in the circle by

(

(x −
1

2
)2 + (y −

1

2
)2

)

≤
1

4

The percentage is an estimate of the area of the circle

π ≈ 4A

X. Cai HPC on distributed memory



Overview MPI Programming DD

Parallel calculation of π

num = npoints/P;

my_circle_pts = 0;

for (j=1; j<=num; j++) {

generate random 0<=x,y<=1

if (x,y) inside circle

my_circle_pts += 1

}

MPI_Allreduce(&my_circle_pts,

&total_count,

1,MPI_INT,MPI_SUM,

MPI_COMM_WORLD);

pi = 4.0*total_count/npoints;

X. Cai HPC on distributed memory



Overview MPI Programming DD

The issue of load balancing

What if npoints is not divisible by P?

Simple solution of load balancing

num = npoints/P;

if (my_rank < (npoints%P))

num += 1;

Load balancing is very important for performance

Homogeneous processes should have as even disbribution of
work load as possible

(Dynamic) load balancing is nontrivial for real-world parallel
computation

X. Cai HPC on distributed memory



Overview MPI Programming DD

Example: 1D standard wave equation

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6

Consider the 1D wave equation:

∂2u

∂t2
= γ2 ∂2u

∂x2
, x ∈ (0, 1), t > 0,

u(0, t) = UL,

u(1, t) = UR ,

u(x , 0) = f (x),

∂

∂t
u(x , 0) = 0 .

X. Cai HPC on distributed memory



Overview MPI Programming DD

Explicit FDM for 1D wave equation

Define time step ∆t, spatial cell ∆x , and C = γ∆t/∆x ,

u0
i = f (xi ), i = 0, . . . , n + 1,

u−1
i = u0

i +
1

2
C 2(u0

i+1 − 2u0
i + u0

i−1), i = 1, . . . , n

uk+1
i = 2uk

i − uk−1
i + C 2(uk

i+1 − 2uk
i + uk

i−1),

i = 1, . . . , n, k ≥ 0,

uk+1
0 = UL, k ≥ 0,

uk+1
n+1 = UR , k ≥ 0.

X. Cai HPC on distributed memory



Overview MPI Programming DD

Each processor computes on a subinterval

The global domain is partitioned into subdomains

Each subdomain has a set of inner points, plus 2 ghost points
shared with neighboring subdomains

First, uk+1
i is updated on the inner points

Then values on the leftmost and rightmost inner points are
sent to the left and right neighbors

Values from neighbors are received for the left and right ghost
points

X. Cai HPC on distributed memory



Overview MPI Programming DD

Multi-dimensional standard wave equation

∂2u

∂t2
= ∇ ·

(

c2(x)∇u
)

+ f (x, t)

2nd-order centered differences in time and space

⇒ explicit scheme (point-wise update):

uk+1
i ,j = S(uk

i ,j±1, u
k
i±1,j , u

k
i ,j , u

k−1
i ,j , xi ,j , tk)

Can compute all new uk+1
i ,j values independently

Parallelism arises from subdomain decomposition

X. Cai HPC on distributed memory



Overview MPI Programming DD

Let us look at the parallel algorithm in 2D

t=9.54594

     0.2
     0.1
       0

    -0.1
    -0.2
    -0.3
    -0.4

 0
 2

 4
 6

 8
 10  0

 2

 4

 6

 8

 10

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

X. Cai HPC on distributed memory



Overview MPI Programming DD

Partitioning of a rectangular 2D domain into subdomains

5

4

3

2

1

0

Each subdomain has a set of inner points, plus a set of ghost
points shared with neighboring subdomains

X. Cai HPC on distributed memory



Overview MPI Programming DD

Parallel algorithm for 2D wave equation

2

3

0

1

First compute uk+1
i ,j on inner points

Then send point values to neighbors

Then receive values at ghost points from neighbors

X. Cai HPC on distributed memory



Overview MPI Programming DD

Python as an alternative to C for MPI programming

MPI calls in C/Fortran are low level, easy to introduce bugs

Python provides more high-level/Matlab-like programming

Same logical steps as in the C code, but simpler syntax

Python is slow, but fast enough to manage a few MPI calls

X. Cai HPC on distributed memory



Overview MPI Programming DD

The pypar module

Pypar (by O. Nielsen) offers
a high-level interface to a
subset of MPI

Arbitrary Python objects can
be sent via MPI

Very efficient treatment of
NumPy arrays

Alternative tool: PyMPI
(by P. Miller)

X. Cai HPC on distributed memory



Overview MPI Programming DD

Python code snippets for communication

Prepare the outgoing message:

upper_x_out_msg = u[nx-1,:,:]

(efficient 2D array as slice reference)

Exchange messages:

pypar.send(upper_x_out_msg, upper_x_neighbor_id,
bypass=True)

pypar.receive(upper_x_neighbor_id, buffer=x_in_buffer,
bypass=True)

Extract the incoming message:

u[nx,:,:] = x_in_buffer

X. Cai HPC on distributed memory



Overview MPI Programming DD

More detailed parallel Python code (1)

from RectPartitioner import partitioner # generic!!

t = 0
while t <= tstop:

t_old = t; t += dt

# update all inner points (or call C/F77 for this):
u[1:nx,1:ny] = -um2[1:nx,1:ny] + 2*um[1:nx,1:ny] +

Cx2*(um[0:nx-1,1:ny] - 2*um[1:nx,1:ny] + um[2:nx+1,1:ny]) +
Cy2*(um[1:nx,0:ny-1] - 2*um[1:nx,1:ny] + um[1:nx,2:ny+1]) +
dt2*source(x[i], y[j], t_old);

partitioner.update_internal_boundary (u)

X. Cai HPC on distributed memory



Overview MPI Programming DD

More detailed parallel Python code (2)

def update_internal_boundary (self, solution_array):
# communicate in the x-direction first
if lower_x_neigh>-1:

self.out_lower_buffers[0] = solution_array[1,:]
pypar.send(self.out_lower_buffers[0], lower_x_neigh,

use_buffer=True, bypass=True)

if upper_x_neigh>-1:
self.in_upper_buffers[0] =
pypar.receive(upper_x_neigh, buffer=self.in_upper_buffer[0]

bypass=True)
solution_array[nx,:] = self.in_upper_buffers[0]
self.out_upper_buffers[0] = solution_array[nx-1,:]
pypar.send(self.out_upper_buffers[0], upper_x_neigh,

use_buffer=True, bypass=True)

if lower_x_neigh>-1:
self.in_lower_buffers[0] =
pypar.receive(lower_x_neigh, buffer=self.in_lower_buffer[0]

bypass=True)
solution_array[0,:] = self.in_lower_buffers[0]

# communicate in the y-direction afterwards
# ... X. Cai HPC on distributed memory



Overview MPI Programming DD

Generic skeleton of PDE solvers

Nonlinear PDEs: a series of linearized problems per time step

A time stepping scheme for the temporal discretization

At each time step: spatial discretization on a computational
mesh T

Explicit schemes: point-wise update (inherent parallelism)

Implicit schemes: need to solve linear systems Ax = b

Direct solvers of Ax = b are hard to parallelize, however, many
iterative Solvers are well suited for parallel computing

X. Cai HPC on distributed memory



Overview MPI Programming DD

Jacobi iteration: slow, but easy to parallelize

A = {aij} , xk
i =



bi −
∑

j<i

aijx
k−1
j −

∑

j>i

aijx
k−1
j



 /aii

A new xk
i value only depends on old xk−1

i values

⇒ The values xk
i can be updated concurrently!

Same parallelization strategy as for the explicit PDE solvers:

Each processor updates all its inner points
Communication needed between neighbors for updating ghost
boundary points

X. Cai HPC on distributed memory



Overview MPI Programming DD

Krylov subspace solvers: Conjugate Gradients

Suitable for symmetric and positive definite matrices
(AT = A, vTAv > 0, ∀v 6= 0)

Initially: r = b − Ax , p = r , π0
r ,r = (r , r)

Iterations:
w = Ap matrix-vector product

M−1w = w solve preconditioning system

πp,w = (p,w) inner product

ξ = π0
r ,r/πp,w

x = x + ξp vector addition

r = r − ξw vector addition

π1
r ,r = (r , r) inner product

β = π1
r ,r/π

0
r ,r

p = r + βp vector addition

π0
r ,r = π1

r ,r

X. Cai HPC on distributed memory



Overview MPI Programming DD

Observations

Computational kernels of Krylov subspace solvers:

vector additions
inner products
matrix-vector product

Parallelization of Krylov solvers thus needs

parallel vector addition
parallel inner product
parallel matrix-vector product
(parallel preconditioner)

X. Cai HPC on distributed memory



Overview MPI Programming DD

Subdomain-based parallelization

Global domain Ω → {Ωs}
P
s=1, global grid T → {Ts}, internal

boundary of Ωs : ∂Ωs\∂Ω

X. Cai HPC on distributed memory



Overview MPI Programming DD

Distributed matrices and vectors

Each processor is assigned with a subdomain Ωs and the
associated subdomain mesh Ts

Each processor independently carries out spatial discretization
on Ts , giving rise to As and bs (no communication needed)

A global matrix A is distributed as {As}
P
s=1

A global vector b is distributed as {bs}
P
s=1

The rows of A are distributed

Each subdomain is responsible for a few rows in A

X. Cai HPC on distributed memory



Overview MPI Programming DD

Distributed matrices and vectors; FDM

Subdomains arise from dividing the mesh points

Each subdomain owns its computational points exclusively

Layer(s) of ghost boundary points around each subdomain

Rows of As correspond to the computational points in Ωs , no
overlap

X. Cai HPC on distributed memory



Overview MPI Programming DD

Distributed matrices and vectors; FEM

Denote the global finite element mesh by T

Mesh partitioning distributes the elements

Each subdomain is a subset of the elements in T

Rows of As may overlap between neighbors

If there’s one layer of overlapping elements between neighbors,
points on the internal boundaries work as ghost points (as
usual)

X. Cai HPC on distributed memory



Overview MPI Programming DD

Parallel vector addition

Global operation:

w = u + v

Parallel implementation:

ws = us + vs on each subdomain

Only distributed vectors are involved

No communication is needed

X. Cai HPC on distributed memory



Overview MPI Programming DD

Parallel inner product

Global operation:

c = u · v =
∑

ui vi i ∈ all points in T

Parallel implementation:

Partial result on subdomain Ωs :
cs =

∑

us,ivs,i i ∈ computational points in Ts

Global add: c = c1 + c2 + . . . + cP

All-to-all communication (MPI Allreduce) ⇒ c is available
on all subdomains

X. Cai HPC on distributed memory



Overview MPI Programming DD

Parallel matrix-vector product

Global operation:

v = Au

Parallel implementation:

vs = Asus on Ωs

Ghost points in vs have to ask neighbors for values

One-to-one communication between each pair of neighboring
subdomains (MPI Send/MPI Recv)

X. Cai HPC on distributed memory



Overview MPI Programming DD

Some remarks

Domain partitioning ⇒ data decomposition ⇒ work division ⇒
parallelism

Linear algebra operations in an implicit PDE solver are
parallelized using subdomains

All matrices and vectors are distributed according to the
subdomain partitioning {Ωs}

No global matrices and vectors are stored on a single processor

Work on Ωs :

Mostly serial operations on subdomain matrices/vectors
Communication is needed between chunks of serial operations

Many libraries for parallel linear algebra

X. Cai HPC on distributed memory



Overview MPI Programming DD

Some parallel libraries for linear algebra and linear systems

ACTS (tools collection, unified interfaces)

ScaLAPACK (F77)

PETSc (C)

Trilinos (C++)

UG (C)

A++/P++ (C++)

Diffpack (C++)

X. Cai HPC on distributed memory

http://acts.nersc.gov/
http://www.netlib.org/scalapack/
http://www-unix.mcs.anl.gov/petsc/petsc-2/
http://software.sandia.gov/trilinos/
http://cox.iwr.uni-heidelberg.de/~ug/
http://www.llnl.gov/casc/Overture/
http://www.diffpack.com


Overview MPI Programming DD

Finite element mesh partitioning can be easy or difficult

When a global mesh T
exists for Ω, domain
partitioning reduces to mesh
partitioning

For structured global
box-shaped meshes, mesh
partitioning is quite easy

For unstructured finite
element meshes, mesh
partitioning is non-trivial

1.2×104 1.3×104 1.4×104
377.4

1000

2000

3000

3200

377.4

1000

2000

3000

3200

X. Cai HPC on distributed memory



Overview MPI Programming DD

Objectives for partitioning

Objectives

Subdomains have approximately the same amount of elements
and points

Low cost of inter-subdomain communication:

# neighbors per subdomain is small
# shared points between neighbors is small

Partitioning an unstructured finite element mesh is a nontrivial
load balancing problem

X. Cai HPC on distributed memory



Overview MPI Programming DD

Overview of partitioning algorithms

Geometric algorithms (using mesh point coordinates):

Recursive bisections
Space-filling curve approaches

Graph-based algorithms (using connectivity info):

Greedy partitioning
Spectral partitioning
Multilevel partitioning

Best choice: multilevel graph-based partitioning algorithms
(Metis/ParMetis package)

X. Cai HPC on distributed memory



Overview MPI Programming DD

Graph-based partitioning algorithms

Graph partitioning is a well-studied problem, many algorithms
exist

Mesh partitioning is similar to graph partitioning (However,
not identical!)

Easy to translate a mesh to a graph

The graph partitioning result is projected back to the mesh to
produce the subdomains

X. Cai HPC on distributed memory



Overview MPI Programming DD

The graph partitioning problem

A graph G = (V ,E ) is a set of vertices and a set of edges,
both with individual weights, one edge connects two vertices

P-way partitioning of G : divide V into P subsets of vertices,
V1, V2, . . ., VP , where

all subsets have (almost) the same summed vertex weights
summed weights of edges that stride between the
subsets—edge cut—is minimized

X. Cai HPC on distributed memory



Overview MPI Programming DD

From a mesh to a graph

Each element becomes a vertex in the resulting graph. Whether or
not an edge between two vertices depends on ”neighbor-ship”,

X. Cai HPC on distributed memory



Overview MPI Programming DD

A partitioning example

A dual graph is first built on the basis of the mesh. The graph is
then partitioned.

X. Cai HPC on distributed memory



Overview MPI Programming DD

A partitioning example (cont’d)

The graph partitioning result is mapped back to the mesh and
gives rise to the subdomains.

X. Cai HPC on distributed memory



Overview MPI Programming DD

Multilevel graph partitioning

Efficient and flexible with three phases:

Coarsening phase: a recursive process that generates a
sequence of subsequently coarser graphs G 0,G 1, . . . Gm

Initial partition phase: the coarsest graph Gm is divided into
P subsets

Uncoarsening phase: the partitions of Gm is projected
backward to G 0, while the partitions are adjusted for
improvement along the way

Examples of public-domain software: Jostle & Metis

X. Cai HPC on distributed memory



Overview MPI Programming DD

List of Topics

1 Overview of HPC

2 Introduction to MPI

3 Programming examples

4 High-level parallelization via DD

X. Cai HPC on distributed memory



Overview MPI Programming DD

About parallel PDE solvers

Programming a new PDE solver can be relatively easy

start with partitioning the global mesh ⇒ subdomain meshes
parallel discrtetization ⇒ distributed matrices/vectors
use parallel linear algebra libraries (PETSc, Trilinos, etc.)

Parallelizing an existing serial PDE can be hard

low-level loops may not be readily parallelizable

Special numerical components may also be hard to parallelize

not available in standard parallel libraries

Need a user-friendly parallelization for the latter two situations

X. Cai HPC on distributed memory



Overview MPI Programming DD

Programming objectives

A general and flexible programming framework is desired

extensive reuse of serial PDE software

simple programming effort by the user

possibility of hybrid features in different local areas

X. Cai HPC on distributed memory



Overview MPI Programming DD

Mathematical methods based on domain decomposition

Global solution domain is decomposed into subdomains:

Ω = ∪P
s=1 Ωs

Solving a global PDE on Ω ⇒ iteratively and repeatedly
solving the smaller subdomain problems on Ωs , 1 ≤ s ≤ P

The artificial condition on the internal boundary of each Ωs is
updated iteratively

The subdomain solutions are ”patched together” to give a
global approximate solution

X. Cai HPC on distributed memory



Overview MPI Programming DD

More on mathematical DD methods

Efficient methods for solving PDEs

Flexible treatment of local features in a global problem

Many variants of mathematical DD methods

overlapping DD
non-overlapping DD

Work as both stand-alone PDE solver and preconditioner

Well suited for parallel computing

X. Cai HPC on distributed memory



Overview MPI Programming DD

Alternating Schwarz algorithm

The very first DD method for

−∇2u = f in Ω = Ω1 ∪ Ω2

u = g on ∂Ω

For n = 1, 2, . . . until convergence

−∇2un
1 = f1 in Ω1,

un
1 = g on ∂Ω1\Γ1,

un
1 = un−1

2 |Γ1
on Γ1.

−∇2un
2 = f2 in Ω2,

un
2 = g on ∂Ω2\Γ2,

un
2 = un

1 |Γ2
on Γ2.

ΩΩ1 2
Γ

Γ2

1

X. Cai HPC on distributed memory



Overview MPI Programming DD

Additive Schwarz method

One particular overlapping DD method for many subdomains

Original PDE in Ω: LΩuΩ = fΩ (i.e., uΩ = L−1
Ω fΩ)

Additive Schwarz iterations ⇒ concurrent work all Ωs :

uk+1
Ωs

= L−1
Ωs

fΩs
(uk

Ω) in Ωs ,

uk+1
Ωs

= uk
Ω on ∂Ωs ,

where uk
Ω is a ”global composition” of latest subdomain

approximations {uk
Ωs
}

during each iteration a subdomain independently updates its
local solution
exchange of local solutions between neighboring subdomains at
end of each iteration

X. Cai HPC on distributed memory



Overview MPI Programming DD

More on additive Schwarz

Simple algorithmic structure

Straightforward for parallelization

serial local discretization on Ωs

serial subdomain solver on Ωs

communication needed to compose the global solution

The numerical strategy is generic

Can be implemented as a parallel library

Possibility of having different features among subdomains

different mathematical models
different numerical methods
different mesh types and resolutions
different serial code

X. Cai HPC on distributed memory



Overview MPI Programming DD

A generic software framework

Processor 0 Processor 1 Processor n

Communication network

SubdomainSimulator

Administrator

Communicator

SubdomainSimulator

SubdomainSimulator

SubdomainSimulator

Administrator

Communicator

SubdomainSimulator

SubdomainSimulator

SubdomainSimulator

Administrator

Communicator

SubdomainSimulator

SubdomainSimulator

Object-oriented programming

Administrator, SubdomainSolver and Communicator are
programmed as generic classes once and for all

Re-usable for parallelizing many different PDE solvers

Can hide communication details from user

X. Cai HPC on distributed memory



Overview MPI Programming DD

Parallelizing a serial PDE solver in C++

An existing serial PDE solver as class MySolver

New implementation work task 1:
class My SubdSolver : public SubdomainSolver,
public MySolver

Double inheritance
Implement the generic functions of SubdomainSolver by
calling/extending functions of MySolver
Mostly code reuse, little new programming

New implementation work task 2:
class My Administrator : public Administrator

Extend Administrator to handle problem-specific details
Mostly ”cut and paste”, little new programming

Both implementation tasks are small and easy

X. Cai HPC on distributed memory



Overview MPI Programming DD

Summary on programming parallel PDE solvers

Subdomains give a natural way of parallelizing PDE solvers

Discretization is embarrasingly parallel ⇒ distributed
matrices/vectors

Linear-algebra operations are easily parallelized

Additive Schwarz approach may be useful if

special parallel preconditioners are desired, and/or
high-level parallelization of legacy PDE code is desired, and/or
a parallel hybrid PDE solver is desired

Most of the parallelization work is generic

Languages like C++ and Python help to produce user-friendly
parallel libraries

X. Cai HPC on distributed memory



Overview MPI Programming DD

Concluding remarks

Distributed memory is present in most parallel systems

Message passing is used to program distributed memory

full user control
good performance
however many low-level details

Use existing parallel numerical libraries if possible

High-level parallelization is achievable

Hybrid parallelism is possible by using SMP/Multicore for
each subdomain

X. Cai HPC on distributed memory


	Overview of HPC
	Introduction to MPI
	Programming examples
	High-level parallelization via DD

