High-performance computing

on distributed-memory architecture

Xing Cai

Simula Research Laboratory

Dept. of Informatics, University of Oslo

Geilo
January 20-25, 2008

o = = QA
X. Cai HPC on distributed memory

Winter School on Parallel Computing

@ Overview of HPC

© Introduction to MPI
© Programming examples
o

High-level parallelization via DD

[m] [=

Qe
X. Cai

HPC on distributed memory

Overview
List of Topics

@ Overview of HPC

o = = QA
X. Cai HPC on distributed memory

Overview
Motivation

@ Nowadays, HPC refers to the use of parallel computers
computing

@ Memory performance is the No.1 limiting factor for scientific
@ size
o speed

@ commodity clusters

@ Most parallel platforms have some level of distributed memory
o distributed-memory MPP systems (tightly integrated)
& constellations

@ Good utilization of distributed memory requires appropriate
parallel algorithms and matching implementation

In this lecture, we will focus on distribued memory

o = A
X. Cai HPC on distributed memory

Architecture development of Top500 list

- ARCHITECTURES

http://www.top500.0rg)

[m] = =

X. Cai HPC on distributed memory

Overview

Distributed memory

network

A schematic view of distributed memory

Plot obtained from https://computing.llnl.gov/tutorials/parallel_comp/

=] = Ay
X. Cai HPC on distributed memory

Overview

Hybrid distributed-shared memory

network

A schematic view of hybrid distributed-shared memory

Plot obtained from https://computing.llnl.gov/tutorials/parallel_comp/

=] = = Ay
X. Cai HPC on distributed memory

Overview
Main features of distributed memory

@ Individual memory units share no physical storage
@ Exchange of info is through explicit communication

@ Messing passing is the de-facto programming style for
distributed memory

@ A programmer is often responsible for many details
o identification of parallelism
o design of parallel algorithm and data structure
@ breakup of tasks/data/subdomains
¢ load balancing
@ insertion of communication commands

=] F = = DA

X. Cai HPC on distributed memory

List of Topics

© Introduction to MPI

o = = QA
X. Cai HPC on distributed memory

MPI

MPI (message passing interface)

MPI is a library standard for programming distributed memory)

@ MPI implementation(s) available on almost every major
parallel platform (also on shared-memory machines)

@ Portability, good performance & functionality
o Collaborative computing by a group of individual processes
@ Each process has its own local memory

@ Explicit message passing enables information exchange and
collaboration between processes

More info: http://www-unix.mcs.anl.gov/mpi/ J

=] F = = DA

X. Cai HPC on distributed memory

MPI basics

The MPI specification is a combination of MPI-1 and MPI-2
MPI-1 defines a collection of 120+ commands

MPI-2 is an extension of MPI-1 to handle " difficult” issues
MPI has language bindings for F77, C and C++

e © ¢ ¢ ¢

There also exist, e.g., several MPI modules in Python (more
user-friendly)

(]

Knowledge of entire MPI is not necessary

=] F = = DA

X. Cai HPC on distributed memory

MPI

MPI language bindings

C binding

#include <mpi.h>

rc = MPI_Xxxxx(parameter, ...)
Fortran binding

include ’mpif.h’

CALL MPI_XXXXX(parameter,

, lerr)

o = = QA
X. Cai HPC on distributed memory

MPI

MPIl communicator

MPI_COMM_WORLD

@ An MPI| communicator: a "communication universe” for a
group of processes

@ MPI_COMM_WORLD — name of the default MPl communicator,
i.e., the collection of all processes

@ Each process in a communicator is identified by its rank

@ Almost every MPl command needs to provide a communicator

as input argument nac
X. Cai HPC on distributed memory

MPI

MPI process rank

(]

Each process has a unique rank, i.e. an integer identifier,
within a communicator

The rank value is between 0 and #procs-1
The rank value is used to distinguish one process from another

Commands MPI_Comm_size & MPI_Comm_rank are very useful

e © ¢ ¢

Example

int size, my_rank;
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank) ;

if (my_rank==0) {

}

=] F = = DA

X. Cai HPC on distributed memory

MPI

MPI " Hello-world” example

#include <stdio.h>
#include <mpi.h>

int main (int nargs, char** args)
{
int size, my_rank;
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);
printf("Hello world, I’ve rank %d out of ’%d procs.\n",
my_rank,size) ;
MPI_Finalize ();
return O;

=] F = = DA

X. Cai HPC on distributed memory

MPI

MPI " Hello-world” example (cont'd)

@ Compilation example: mpicc hello.c
o Parallel execution example: mpirun -np 4 a.out

@ Order of output from the processes is not determined, may
vary from execution to execution

Hello world, I’ve rank 2 out of 4 procs.
Hello world, I’ve rank 1 out of 4 procs.
Hello world, I’ve rank 3 out of 4 procs.
Hello world, I’ve rank O out of 4 procs.

=] F = = DA

X. Cai HPC on distributed memory

MPI

The mental picture of parallel execution

The same MPI program is executed concurrently on each process

Process 0

#include <sedio.h>
#include <apl.b>

Process 1

#include <stdio.h>

Process P-1

#include <mpi.h>
int =ain (int nargs,
t

#include <etdio.h>
#include <upl.b>

int main (int marge, char
i

o = = E A
X. Cai HPC on distributed memory

MPI

MPI point-to-point communication

@ Participation of two different processes
@ Several different types of send and receive commands
s Blocking/non-blocking send

s Blocking/non-blocking receive

o Four modes of send operations
@ Combined send/receive

o = = QA
X. Cai HPC on distributed memory

MPI

Standard MPI_send/MPI recv

@ To send a message

int MPI_Send(void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm);

@ To receive a message

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm,
MPI_Status *status);

An MPI message is an array of data elements "inside an
envelope”

o Data: start address of the message buffer, counter of elements
in the buffer, data type

@ Envelope: source/destination process, message tag,
communicator

o = = E A
X. Cai HPC on distributed memory

MPI

Example of MPI_send/MPI recv

#include <stdio.h>
#include <mpi.h>

int main (int nargs, char*x args)
{
int size, my_rank, flag;
MPI_Status status;
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

if (my_rank>0)
MPI_Recv (&flag, 1, MPI_INT,
my_rank-1, 100, MPI_COMM_WORLD, &status);

printf ("Hello world, I’ve rank %d out of ’%d procs.\n",my_rank,siz

if (my_rank<size-1)
MPI_Send (&my_rank, 1, MPI_INT,
my_rank+1, 100, MPI_COMM_WORLD) ;

MPI_Finalize ();
return O; bEV¥es

X. Cai HPC on distributed memory

MPI

Example of MPI_send/MPI recv (cont’d)

Process 0

Process 1

Process P-1

@ Enforcement of ordered output by passing around a
"semaphore”, using MPI_send and MPI_recv

@ Successful message passover requires a matching pair of
MPI_send and MPI recv

v
o = = QA
X. Cai HPC on distributed memory

MPI

MPI collective communication

A collective operation involves all the processes in a communicator:
(1) synchronization (2) data movement (3) collective computation

data—>
proce: tAO Ao
l one-to-all broadcast [a
0
MPI _BCAST Ao
Ao
A AlAA
Ao all-to-one gather 0"aP2s
1 ~
A
2 MPl _GATHER
Az
AglAq|AL A A
01711721781 one-to-all scatter 0
1
Az
MPlI _SCATTER
3
o = = = = 9ac
X. Cai HPC on distributed memory

MPI

Collective communication (cont “d)

Processes

Initial
Data :

1 2 3

MPI_REDUCE with MPI_MIN,

root =

MPI_ALLREDUCE with MPI_MIN

MPI_REDUCE with MPI_SUM,

root =

X. Cai

[m]

HPC on distributed memory

DA

MPI

MPI example of collective communication

Inner-product between two vectors: ¢ = >_" ; a(i)b(i) J

MPI_Comm_size (MPI_COMM_WORLD, &num_procs) ;
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank);

my_start = n/num_procs*my_rank;
my_stop = n/num_procs*(my_rank+1) ;

my_c = 0.;
for (i=my_start; i<my_stop; i++)
my_c = my_c + (a[i] * b[il);

MPI_Allreduce (&my_c, &c, 1, MPI_DOUBLE,
MPI_SUM, MPI_COMM_WORLD) ;

=] F = = DA

X. Cai HPC on distributed memory

List of Topics

Programming

9 Programming examples

o = QA
X. Cai HPC on distributed memory

Programming
Parallel programming overview

@ Decide a "breakup” of the global problem
o functional decomposition — a set of concurrent tasks

o data parallelism — sub-arrays, sub-loops, sub-domains
@ Choose a parallel algorithm (e.g. based on modifying a serial
algorithm)

@ Design local data structure, if needed

o Standard serial programming plus insertion of MPI calls

ot
o = = QA
X. Cai HPC on distributed memory

Programming
Calculation of 7

Want to numerically approximate the value of 7)

@ Area of a circle: A= 7R?

@ Area of the largest circle that fits into the unit square: 7,
because R = %

@ Estimate of the area of the circle = estimate of ©
o How?

@ Throw a number of random points into the unit square
@ Count the percentage of points that lie in the circle by

(=32 +0-37?) <3

@ The percentage is an estimate of the area of the circle

o T~ 4A

[=] = = = A

X. Cai HPC on distributed memory

Programming
Parallel calculation of 7

num = npoints/P;
my_circle_pts = O;

for (j=1; j<=num; j++) {
generate random 0<=x,y<=1
if (x,y) inside circle
my_circle_pts += 1

}

MPI_Allreduce (&my_circle_pts,
&total_count,
1,MPI_INT,MPI_SUM, :
MPI_COMM_WORLD) ; Ctask 1

I task 2
T task 3
pi = 4.0*total_count/npoints; D task 4
o
[m] = = =

DA

X. Cai HPC on distributed memory

Programming
The issue of load balancing

What if npoints is not divisible by P?

@ Simple solution of load balancing

num = npoints/P;
if (my_rank < (npoints%P))
num += 1;
@ Load balancing is very important for performance

@ Homogeneous processes should have as even disbribution of
work load as possible

@ (Dynamic) load balancing is nontrivial for real-world parallel
computation

o = = E A
X. Cai HPC on distributed memory

Programming
Example: 1D standard wave equation

Consider the 1D wave equation:

?u ,0%u
Z o 2F 1
52 = B2 x € (0,1), t >0,

U(O, 1.‘) = Uy,

u(l, t) = Ug,

u(x,0) = f(x),

%U(X,O) =0.)

=] [

X. Cai HPC on distributed memory

Programming

Explicit FDM for 1D wave equation

Define time step At, spatial cell Ax, and C = yAt/Ax,

W ="f(x), i=0,....,n+1,

1
u,._1 = u,(-) + §C2(u?+1 — 2u,(-) 4 u?_l), i=1,...,n
u

k+1 _ o, k
P =20

k—1 20 k k| ok
— Ui+ C(ufy — 20 + Ui y),

i=1,...,n, k>0,
™t =uU, k>0,
ui = Ug, k>0

o = = E A
X. Cai HPC on distributed memory

Programming
Each processor computes on a subinterval

@ The global domain is partitioned into subdomains

@ Each subdomain has a set of inner points, plus 2 ghost points
shared with neighboring subdomains

o First, u;‘H is updated on the inner points

@ Then values on the leftmost and rightmost inner points are
sent to the left and right neighbors

@ Values from neighbors are received for the left and right ghost
points

ot

o = = E A
X. Cai HPC on distributed memory

Programming

Multi-dimensional standard wave equation

P
o2

=V (*(x)Vu) + f(x,t)

@ 2nd-order centered differences in time and space

@ = explicit scheme (point-wise update):
k+1 _ k k-1
uj Brgo By 22500 ti)
i’.j

! values independently
@ Parallelism arises from subdomain decomposition

.
o = = QA
X. Cai HPC on distributed memory

k k
S(ui,j:tl’ Uit1,j>
@ Can compute all new u

k+

Programming

Let us look at the parallel algorithm in 2D

t=9.54594

.
R

= S
T T TSRS e
06 eSS S
. D S 2 P
A R
o2 | R 1 S|
= R] 1 R
Z LRI
02 Z77 R 1 1 IS
= LA IS
O = N
7 S RS
021 SN
L7 TR
AR
: r L7 RS
0.4 ..u...gz.:.::.:.::,::,e
-06 LR
10
0

o = = QA

HPC on distributed memory

Programming

Partitioning of a rectangular 2D domain into subdomains

OO0O0O0O00O0
OO0O0O0O00O0
OO0O0O0O00O0
000000
OOOO]OO
OO0O0O0O00O0
OO0O00O00O0
O0000O0
OO0O0OO00O0

O[O0 O0OO0OO0OO0O0
> 0[00 000000
S O0l0 0000000

w
6]

Each subdomain has a set of inner points, plus a set of ghost
points shared with neighboring subdomains

=] F = = DA

X. Cai HPC on distributed memory

Programming
Parallel algorithm for 2D wave equation

@)

[EY
O O
w

38

OO000O0|0O0

ON©)

©OO000O0
® O O O O

CJCHOCNONCICHCHONONGC

co0o000l0o0000

OO0 00000000

coo000l0o0000

OO0 0O0O0|0

0000000000
oooo:
Q000 e|o

O 0O

@ First compute ulkjl on inner points

@ Then send point values to neighbors

@ Then receive values at ghost points from neighbors
’ o (=1 = = A
X. Cai HPC on distributed memory

Programming

Python as an alternative to C for MPI programming

@ MPI calls in C/Fortran are low level, easy to introduce bugs
@ Python provides more high-level/Matlab-like programming
@ Same logical steps as in the C code, but simpler syntax

@ Python is slow, but fast enough to manage a few MPI calls

=] F = = DA

X. Cai HPC on distributed memory

Programming
The pypar module

° AR S ° @ Pypar (by O. Nielsen) offers

S °L° SO a high-level interface to a

: : : T_T__:__:_:.__TT_L : : : subset of MPI

s s 0 ey][°© o @ Arbitrary Python objects can

::<:—T-T::::T-1—:>:: be sent via MPI

e e o } ; e o oo If][°© oo @ Very efficient treatment of

DIOUEIRIERS or NumPyamas
©o0o0oofloo oo @ Alternative tool: PyMPI

I A (by P. Miller)

[m] = = =
X. Cai HPC on distributed memory

DA

Programming
Python code snippets for communication

@ Prepare the outgoing message:

upper_x_out_msg = u[nxz-1,:,:]

(efficient 2D array as slice reference)
@ Exchange messages:

pypar.send(upper_x_out_msg, upper_x_neighbor_id,
bypass=True)

pypar.receive(upper_x_neighbor_id, buffer=x_in_buffer,
bypass=True)
@ Extract the incoming message:

ulnx,:,:] = x_in_buffer

o = QA
X. Cai HPC on distributed memory

Programming

More detailed parallel Python code (1)

from RectPartitioner import partitioner # generic!!
t =0
while t <= tstop:

t_old = t; t += dt

update all inner points (or call C/F77 for this):
ull:nx,1:ny] = -um2[1:nx,1:ny] + 2%um[1l:nx,1:ny] +
Cx2*(um[0:nx-1,1:ny] - 2*%um[1:nx,1:ny] + um[2:nx+1,1:ny]

Cy2*(um[1:nx,0:ny-1] - 2*%um[1:nx,1:ny] + um[1:nx,2:ny+1]
dt2*source(x[i], y[jl, t_old);

+ +

— -

partitioner.update_internal_boundary (u)

[m] = = =

A
X. Cai HPC on distributed memory

Programming

More detailed parallel Python code (2)

def update_internal_boundary (self, solution_array):
communicate in the x-direction first
if lower_x_neigh>-1:
self .out_lower_buffers[0] = solution_array[1,:]
pypar.send(self.out_lower_buffers[0], lower_x_neigh,
use_buffer=True, bypass=True)

if upper_x_neigh>-1:
self.in_upper_buffers[0] =
pypar .receive(upper_x_neigh, buffer=self.in_upper_buffer [0]
bypass=True)
solution_array[nx,:] = self.in_upper_buffers[0]
self.out_upper_buffers[0] = solution_array[nx-1,:]
pypar .send(self.out_upper_buffers[0], upper_x_neigh,
use_buffer=True, bypass=True)

if lower_x_neigh>-1:
self.in_lower_buffers[0] =
pypar.receive(lower_x_neigh, buffer=self.in_lower_buffer [0]
bypass=True)
solution_array[0,:] = self.in_lower_buffers[0]

communicate in the y-direction afterwards Na e

X. Cai HPC on distributed memory

Programming
Generic skeleton of PDE solvers

@ Nonlinear PDEs: a series of linearized problems per time step
@ A time stepping scheme for the temporal discretization

@ At each time step: spatial discretization on a computational
mesh T

@ Explicit schemes: point-wise update (inherent parallelism)

@ Implicit schemes: need to solve linear systems Ax = b

Direct solvers of Ax = b are hard to parallelize, however, many
iterative Solvers are well suited for parallel computing

o = = E A
X. Cai HPC on distributed memory

Programming

Jacobi iteration: slow, but easy to parallelize

k k—1 k—1
A={agy, xf'= b= apgt = apgt| /ai
j<i J>i
o A new x,-k value only depends on old x,-k_:l values
@ = The values x¥

1

can be updated concurrently!

@ Same parallelization strategy as for the explicit PDE solvers:
o Each processor updates all its inner points

boundary points

@ Communication needed between neighbors for updating ghost

o = = QA
X. Cai HPC on distributed memory

Programming
Krylov subspace solvers: Conjugate Gradients

Suitable for symmetric and positive definite matrices
(AT =A vTAv >0, Vv #0)
Initially: r =b—Ax, p=r, w0, = (r,r)
Iterations:
w = Ap matrix-vector product
M~tw=w solve preconditioning system
Tpw = (P, W) inner product
§= 7T?,r/ﬂ-PyW
x=x+&p vector addition
r=r—~¢&w vector addition
mr, = (r,r) inner product
g,
p=r+0p vector addition
"0, =,

- s = YA

X. Cai HPC on distributed memory

Observations

Programming

@ Computational kernels of Krylov subspace solvers:
& vector additions
@ inner products

@ matrix-vector product

o parallel vector addition

o Parallelization of Krylov solvers thus needs
o parallel inner product

@ parallel matrix-vector product
@ (parallel preconditioner)

ot
o = QA
X. Cai HPC on distributed memory

Programming
Subdomain-based parallelization

Global domain Q — {Q}F_,, global grid T — {7}, internal
boundary of Qg: 9Q:\0Q2

J

X. Cai

[m]

- =
HPC on distributed memory

DA

Programming

Distributed matrices and vectors

@ Each processor is assigned with a subdomain Qg and the
associated subdomain mesh 7

@ Each processor independently carries out spatial discretization
on 7, giving rise to As and bs (no communication needed)

@ A global matrix A is distributed as {A}F_;

@ A global vector b is distributed as {bs}£_;

@ The rows of A are distributed

@ Each subdomain is responsible for a few rows in A

=] F = = DA

X. Cai HPC on distributed memory

Programming

Distributed matrices and vectors; FDM

@ Subdomains arise from dividing the mesh points
@ Each subdomain owns its computational points exclusively
@ Layer(s) of ghost boundary points around each subdomain

@ Rows of A; correspond to the computational points in {25, no
overlap

=] F = = DA

X. Cai HPC on distributed memory

Programming

Distributed matrices and vectors; FEM

(*]
(]
(*]
(*]
(*]

Denote the global finite element mesh by 7°
Mesh partitioning distributes the elements

Each subdomain is a subset of the elements in 7°
Rows of As; may overlap between neighbors

If there's one layer of overlapping elements between neighbors,
points on the internal boundaries work as ghost points (as
usual)

o = = E A
X. Cai HPC on distributed memory

Programming
Parallel vector addition

Global operation:

W=u-+v
Parallel implementation:

@ W5 = Us + Vs on each subdomain
@ Only distributed vectors are involved

@ No communication is needed

o = = QA
X. Cai HPC on distributed memory

Programming
Parallel inner product

Global operation:
c:u-v:Zu;v,- i € all points in 7
Parallel implementation:
o Partial result on subdomain €,:
Cs =), UsiVs; I € computational points in 7
@ Globaladd: c=ci+c+...+cp

@ All-to-all communication (MPI_Allreduce) = c is available
on all subdomains

[}
X. Cai

=
HPC on distributed memory

DA

Programming

Parallel matrix-vector product

Global operation:
v =Au
Parallel implementation:

@ vs = Asus on €

@ Ghost points in vs have to ask neighbors for values

@ One-to-one communication between each pair of neighboring
subdomains (MPI_Send/MPI _Recv)

V.
o = = QA
X. Cai HPC on distributed memory

Programming

Some remarks

Domain partitioning = data decomposition = work division =
parallelism

@ Linear algebra operations in an implicit PDE solver are
parallelized using subdomains

@ All matrices and vectors are distributed according to the
subdomain partitioning {Qs}

@ No global matrices and vectors are stored on a single processor
o Work on Qg:

s Mostly serial operations on subdomain matrices/vectors
@ Communication is needed between chunks of serial operations

ot

Many libraries for parallel linear algebra)

=] F = = DA

X. Cai HPC on distributed memory

Programming

Some parallel libraries for linear algebra and linear systems

(*]
(*]
(*]
(*]
(*]
(]
(]

ACTS (tools collection, unified interfaces)
ScalLAPACK (F77)

PETSc (C)

Trilinos (C++)

UG (C)

A++/P++ (C++)

Diffpack (C++)

=] F = = DA

X. Cai HPC on distributed memory

http://acts.nersc.gov/
http://www.netlib.org/scalapack/
http://www-unix.mcs.anl.gov/petsc/petsc-2/
http://software.sandia.gov/trilinos/
http://cox.iwr.uni-heidelberg.de/~ug/
http://www.llnl.gov/casc/Overture/
http://www.diffpack.com

N
KR
e,
SRR
A

1.4x10

RRERERK
ATAT O
SOORESEK,
TN

X
%
2o
)
K
S
XX
RS
KRS
X
Y
Rt
T
X
50
Vas
X

O
cd
XA
X
X

0

&

Y
o

ARKRS
S
0
s
vy
Q
1.3x10

KX
o,

T

K
&

1500
3
R
RED
88
QKX
o
%
£

48
%5
&
X

2R
X
R
X
%
X
>

X
s
SRECK
X
=

R0

)
L

o,

Y,

'¢'4
5
7
)
v
%)
pox.

&

vy

B

PIIAEY

uted memory

120

2000
1000
377.4

(5
9]
X

ramming

in
inite

Prog
mesh

duces to mesh

for Q, doma

partitioning re
partitioning

partitioning is quite easy

partitioning is non-trivia

exists
box-shaped meshes, mesh

@ When a global mesh 7°

@ For structured global

@ For unstructured f
element meshes

el
=)
9
L
=
®)
| .
(@)
>
(73]
(g0]
()
(D]
0
c
T
O
oY)
1=
c
.0
b=
4
| .
T
o
L=
0
(O]
S
4
c
()
S
2
(O]
[}
=
=
L

Programming
Objectives for partitioning

Objectives
@ Subdomains have approximately the same amount of elements
and points

@ Low cost of inter-subdomain communication:
@ # neighbors per subdomain is small

o # shared points between neighbors is small

Partitioning an unstructured finite element mesh is a nontrivial
load balancing problem

o
o = QA
X. Cai HPC on distributed memory

Programming

Overview of partitioning algorithms

@ Geometric algorithms (using mesh point coordinates):
@ Recursive bisections

@ Space-filling curve approaches

@ Spectral partitioning

@ Graph-based algorithms (using connectivity info):
o Greedy partitioning
o Multilevel partitioning

@ Best choice: multilevel graph-based partitioning algorithms
(Metis/ParMetis package)

o = = QA
X. Cai HPC on distributed memory

Programming

Graph-based partitioning algorithms

@ Graph partitioning is a well-studied problem, many algorithms
exist

@ Mesh partitioning is similar to graph partitioning (However,
not identical!)

o Easy to translate a mesh to a graph

@ The graph partitioning result is projected back to the mesh to
produce the subdomains

o = = E A
X. Cai HPC on distributed memory

The graph partitioning problem

@ A graph G = (V,E) is a set of vertices and a set of edges,
both with individual weights, one edge connects two vertices

@ P-way partitioning of G: divide V into P subsets of vertices,
Vi, Vo, ..., Vp, where

@ all subsets have (almost) the same summed vertex weights
o summed weights of edges that stride between the
subsets—edge cut—is minimized

o = = E A
X. Cai HPC on distributed memory

Programming
From a mesh to a graph

Each element becomes a vertex in the resulting graph. Whether or

not an edge between two vertices depends on " neighbor-ship”,
o = = QA

Programming

A partitioning example

tM&w

NN

b%'#é"%’
Ik

A dual graph is first built on the basis of the mesh. The graph is
then partitioned. J

F = = E 9DAC¢

Programming

A partitioning example (cont'd)

Subdomain 1

Subdomain 3

Subdomain 2

The graph partitioning result is mapped back to the mesh and
gives rise to the subdomains.

Subdomain 4

X. Cai

[m]

=
HPC on distributed memory

DA

Programming
Multilevel graph partitioning

Efficient and flexible with three phases:

@ Coarsening phase: a recursive process that generates a
sequence of subsequently coarser graphs G, G1,... G™

@ Initial partition phase: the coarsest graph G is divided into
P subsets

@ Uncoarsening phase: the partitions of G™ is projected
backward to G°, while the partitions are adjusted for
improvement along the way

Examples of public-domain software: Jostle & Metis)

=] F = = DA

X. Cai HPC on distributed memory

List of Topics

@ High-level parallelization via DD

o = = QA
X. Cai HPC on distributed memory

About parallel PDE solvers

@ Programming a new PDE solver can be relatively easy
@ start with partitioning the global mesh = subdomain meshes
o parallel discrtetization = distributed matrices/vectors

o use parallel linear algebra libraries (PETSc, Trilinos, etc.)
@ Parallelizing an existing serial PDE can be hard

@ low-level loops may not be readily parallelizable

@ Special numerical components may also be hard to parallelize
@ not available in standard parallel libraries

Need a user-friendly parallelization for the latter two situations

o = QA
X. Cai HPC on distributed memory

Programming objectives

A general and flexible programming framework is desired

@ extensive reuse of serial PDE software
@ simple programming effort by the user

@ possibility of hybrid features in different local areas

o = = QA
X. Cai HPC on distributed memory

DD

Mathematical methods based on domain decomposition

@ Global solution domain is decomposed into subdomains:
Q=ul,Q,

@ Solving a global PDE on Q = iteratively and repeatedly
solving the smaller subdomain problems on Q;, 1 <s < P

@ The artificial condition on the internal boundary of each €2 is
updated iteratively

@ The subdomain solutions are " patched together” to give a
global approximate solution

=] F = = DA

X. Cai HPC on distributed memory

DD

More on mathematical DD methods

o Efficient methods for solving PDEs

@ Flexible treatment of local features in a global problem
@ Many variants of mathematical DD methods
& overlapping DD

@ non-overlapping DD

@ Work as both stand-alone PDE solver and preconditioner
@ Well suited for parallel computing

o = QA
X. Cai HPC on distributed memory

DD

Alternating Schwarz algorithm

The very first DD method for

—V%u = f mnQ=0UQ
u = g on 09

For n=1,2,... until convergence
—V2uf = fi inQy, 0
uf = g ondn\l, 2
ul = ui Y, on Ty
~V2ul = f inQ,
ug = g on 0\l
vy = uf|r, on .

=] F = = DA

X. Cai HPC on distributed memory

DD

Additive Schwarz method

@ One particular overlapping DD method for many subdomains
o Original PDE in Q: Loug = fo (i-e., ug = Lg'fa)

@ Additive Schwarz iterations = concurrent work all Q:

k+1 -1 kY
uﬂj = Lg. fa.(ug) in Qs,

k+1 _
uQs

ué on 01,

where ué‘z is a "global composition” of latest subdomain
approximations {ug_}

@ during each iteration a subdomain independently updates its
local solution

@ exchange of local solutions between neighboring subdomains at
end of each iteration

v

o = = E A
X. Cai HPC on distributed memory

DD

More on additive Schwarz

@ Simple algorithmic structure
o Straightforward for parallelization

o serial local discretization on €
o serial subdomain solver on Qg
@ communication needed to compose the global solution

@ The numerical strategy is generic
@ Can be implemented as a parallel library

@ Possibility of having different features among subdomains
o different mathematical models
o different numerical methods
o different mesh types and resolutions
o different serial code

o = = E A
X. Cai HPC on distributed memory

DD

A generic software framework

Processor 0 Processor 1 Processor n
@ N O N e N

Administrator Administrator Administrator
SubdomainSimuIator) (Subdomainsimulator' SubdomainSimuIalor)
SubdomainSimuIator’ (SubdomainSimuIator' SubdomainSimuIator’

@ubdomainSimuIatoD CSubdomainSimuIatoD @ubdomainSimuIatoD
e oo e oo e oo

(Communicator l Communicator ! Communicator »

Communication network

@ Object-oriented programming

@ Administrator, SubdomainSolver and Communicator are
programmed as generic classes once and for all

@ Re-usable for parallelizing many different PDE solvers

@ Can hide communication details from user
— — = A

X. Cai HPC on distributed memory

DD

Parallelizing a serial PDE solver in C++

@ An existing serial PDE solver as class MySolver

@ New implementation work task 1:

class My_SubdSolver : public SubdomainSolver,
public MySolver

@ Double inheritance
o Implement the generic functions of SubdomainSolver by
calling/extending functions of MySolver
o Mostly code reuse, little new programming
@ New implementation work task 2:

class My_Administrator : public Administrator
@ Extend Administrator to handle problem-specific details
@ Mostly "cut and paste”, little new programming

@ Both implementation tasks are small and easy

o = = E A
X. Cai HPC on distributed memory

DD

Summary on programming parallel PDE solvers

(]

Subdomains give a natural way of parallelizing PDE solvers

@ Discretization is embarrasingly parallel = distributed
matrices/vectors

(]

Linear-algebra operations are easily parallelized
Additive Schwarz approach may be useful if

@ special parallel preconditioners are desired, and/or
@ high-level parallelization of legacy PDE code is desired, and/or
o a parallel hybrid PDE solver is desired

©

(]

Most of the parallelization work is generic

(]

Languages like C++ and Python help to produce user-friendly
parallel libraries

=] F = = DA

X. Cai HPC on distributed memory

Concluding remarks

@ Distributed memory is present in most parallel systems
@ Message passing is used to program distributed memory
o full user control
o good performance
o however many low-level details
@ Use existing parallel numerical libraries if possible
o High-level parallelization is achievable

@ Hybrid parallelism is possible by using SMP /Multicore for
each subdomain

o = = E A
X. Cai HPC on distributed memory

	Overview of HPC
	Introduction to MPI
	Programming examples
	High-level parallelization via DD

