
Geilo Winter School
2008

Programming Multicore Processors
Session 2

Henrik Löf, Sverker Holmgren, Jarmo Rantakokko

• Locality
– Exploiting cache memories

• Instruction Level Parallelism (ILP)
– Extracted “automatically” by the compiler
– Unrolling
– Supported by microprocessor inventions

• Multiple pipelines, superscalar execution
• Branch prediction
• Out-of-order execution

Classic ways to high performance

2

Limit on ILP

3

Free lunch is over

• ILP is dead
– Compilers are stuck
– Single thread performance will not follow Moore´s law

• Parallelism is king
– Number of cores and hardware threads will increase
– From now on, every performance critical component

must be parallelized
– What to do with existing code?
– Which model/language shall I use for a rewrite?

4

Ways to Parallelism

• Task Parallelism

• Auto-parallelizing compilers
– Recompile your code

• Parallelized Libraries
– Recompile your code

• Data parallelism
– Rewrite and recompile

• Classic parallel programming
– First get a PhD
– Then redesign, rewrite, recompile, re-everything

5

• Coarse grained
– No fine-grained communication

• Reducing OS time-sharing effects
– Schedule processes of different progams to multiple program

counters
– Run “Web browser”, “Email client”, and the OS in parallel

• Clusters
– Schedule multiple serial jobs (matlab runs, or data base

requests) to nodes of a cluster
– Parameter studies
– Monte-Carlo simulations

Task parallelism (GRID)

6

• Your makefiles define
dependencies between
software components
– Think of it as a graph or tree

• Leaves of the tree can be
compiled in parallel
– The subtasks are

synchronized at the parent

• GNU Make: “make -j n”

program: subfile1.o subfile2.o
 gcc –o program …

subfile1.o: subfile1.c
 gcc –c ……
subfile2.o: subfile2.c
 gcc –c ….

subfile1.o subfile2.o

program

Parallel

Example

7

Parallelizing Compilers

• Been around for 30 years
– Very limited applicability

• Compilers are conservative
– Will not produce code that fails even if it only happens

every full moon on a tuesday

• Compilers have limited “vision”
– Hard and expensive to do whole program analysis
– Most interesting things are unknown at compile time

• Typical blockers
– Data dependencies, pointer aliasing, function calls

8

Libraries and Components

• Replace all your external library calls with parallelized
variants
– BLAS, LAPACK, MKL, ACML, NAG, ESSL, ..

• Extend your code using predefined skeletons and
libraries
– Intel Thread Building Blocks (TBB), STAPL (STL)
– PETSc, HYPRE, Trilinos

• Most of this stuff is for MPI

• Perfect fit for some applications

• Remember Amdahl’s law
– Limited speedup if 10% of your code is serial

9

• Let multiple processors chew on your
data in parallel
– Fine-grained or coarse-grained

• If you use many processors and your
tasks are fine-grained you may be hit by
Amdahl’s law (again!)
– Communication costs
– Synchronization

• Need to work with the parallel overhead
– Efficient algorithms
– Careful implementations
– Choosing the right model/tool

Parallel

Data parallelism

10

Exposing Parallelism

• Sequential machine
– One program counter
– ILP

• Parallel machines
– Multi-processors: many program counters
– Data parallelism: vector machines, SIMD, GPU (monster

ILP)

• Programming models
– How do we load the program counters?

11

fork()/clone()

• Classic way to load two
program counters
– One process per

program counter

• Creates a child process
– Child process is identical

copy (except PID etc)

• Copy-on-Write (COW)
– Copy is privatized on

the first write

#include <unistd.h>
#include <sys/types.h>
#include <stdio.h>
#include <sys/wait.h>
#include <stdlib.h>
int main()
{
 pid_t childpid;
 int retval, status;

 childpid = fork();

 if (childpid >= 0) /* fork succeeded */
 {
 if (childpid == 0) /* child process */
 {
 printf("CHILD: I am the child process!\n");
 printf("CHILD: Here's my PID: %d\n", getpid());
 sleep(1);
 exit(0);
 }
 else /* parent process */
 {
 printf("PARENT: I am the parent process!\n");
 printf("PARENT: Here's my PID: %d\n", getpid());
 wait(&status); /* wait for child to exit */
 exit(0); /* parent exits */
 }
 }
 else /* fork returns -1 on failure */
 {
 perror("fork"); /* display error message */
 exit(0);
 }
}

12

Inter-Process Communication (IPC)

• Because of COW
processes communicate
using OS services
– Files
– Shared Memory Segments
– Sockets
– CORBA
– RPC

• Explicit message passing
between two private
address spaces

• Distributed Memory
Programming
– Can run on a single

machine
– Better name: “local name

space” model
– Examples: MPI, Erlang

13

Message Passing Interface (MPI)

• Every cluster node runs a
daemon process

• MPI_Create is a remote
fork() of this daemon
process (COW)

• MPI_Send is a wrapper to
some IPC mechanism

• On clusters you have to
use a network interface

• Low overhead interfaces
can write directly to the
memory of another node
using RDMA (one-sided
communication in MPI-2)

• On a shared memory
machine you can use a
shared memory IPC
– Use “postboxes” to send

messages

14

Threads

• Run multiple PC:s inside a
single process
– “Threads” of computation

• Threads share the entire
address space
– No IPC between threads
– Communication by loads and

stores
– Shared name space

15

Creating Threads

• Supply a function pointer
(POSIX, Windows)

• Create a new thread
object and call the run()
method (Java)

• Lightweight context
switching

• Used primarily for
concurrency not
parallelism

#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void *thread_func(void *vptr_args);

int main(void){
 int i, j;
 pthread_t thread;

 pthread_create(&thread, NULL, &thread_func, NULL);

 do_some_work();

 pthread_join(thread, NULL);

 exit(EXIT_SUCCESS);
}

void *thread_func(void *vptr_args){
 int i, j;

 do_some_work();
 }
 return NULL;
}

16

Local Name Space Programming

• Need to distribute data explicitly
– May require a complete rewrite of your application

• Need to handle all communication explicitly
– Opportunities for optimization
– Lots of code
– Source of errors (deadlocks etc.)

• Assembly language of parallel programming

• Runs on both distributed memory and shared
memory architectures

17

Shared Name Space Programming

• Decomposition is implicit
– You can incrementally parallelize your application
– “Use it only where it matters”

• Communication is implicit
– Handled by cache coherency
– Less coding
– May trigger unnecessary communication
– Spinlocks is tricky business

• Shared memory systems are hard to understand
– But they appear to be simple

18

• OpenMP is a set of directives which transforms a serial
code into a parallel one
– Parallelization is triggered by the compiler
– Source to source translation

• Calls a runtime library that uses POSIX threads
• If your compiler does not support OpenMP your code

will be compiled into a serial program
• Supported by most compilers

– Fortran, C and C++
– Intel and Sun most influential in the OpenMP ARB
– GCC 4.2

OpenMP

19

• A fundamental concept in
OpenMP is the parallel region

• An OpenMP program starts
executing using one master
thread

• When it hits a parallel region
directive, it spawns a team of
slave threads which execute the
code in parallel
– Your program counters are

executing code from the
parallel region

Fork

Join

OpenMP fork/join model

20

 #include <omp.h>

 int main(void) {

 printf(“This is the master thread with ID %d\n, omp_get_thread_num());

 /* Define a parallel region */

 #pragma omp parallel
 {
 printf(“I am slave thread %d\n”,omp_get_thread_num());
 }

 printf(“This is the master thread again with ID %d\n, omp_get_thread_num());

 return 0;
 }

Example

21

 $cc –xopenmp example.c
 cc: Warning: Specify a supported level of optimization when using -

xopenmp, -xopenmp will not set an optimization level in a future
release. Optimization level changed to 3 to support –xopenmp

 $./a.out
 This is the master thread with ID 0
 I am slave thread 0
 This is the master thread again with ID 0

Compiling

22

• By default, the team will consist only of the master
thread when the parallel region is entered

• To add threads to the default team size use
1. Environment variable OMP_NUM_THREADS

2. Library call omp_set_num_threads(n)

Setting the number of threads

23

 $ export OMP_NUM_THREADS=4
 $./a.out
 This is the master thread with ID 0
 I am slave thread 2
 I am slave thread 1
 I am slave thread 0
 I am slave thread 3
 This is the master thread again with ID 0

Setting the number of threads

24

OpenMP directives (spec 2.5):

Parallel (main, fork threads)

Data sharing
 - shared
 - private
 - firstprivate
 - lastprivate
 - threadprivate

Work sharing
 - do/for
 reduction
 schedule
 ordered
 - sections

Serial sections
 - single
 - master
 - critical
 - atomic
 - ordered

Synchronization
 - barrier
 - flush
 - nowait
- spinlocks

Master thread

Parallel region Parallel region with single section

Master Master

25

Allows for more flexible and user controlled (e.g. load
balancing) programming than with the standard
directives.

• omp_set_num_threads
• omp_get_num_threads
• omp_get_max_threads
• omp_get_thread_num
• omp_set_nested
• and more (e.g. locks)

Environment variables:
• OMP_NUM_THREADS
• OMP_SCHEDULE
• OMP_NESTED

OpenMP library functions:

26

Directives: (Support only in Fortran/C/C++)

C/C++: #pragma omp directive
 { code block }

Fortran: !$omp directive
 code block
 !$omp end directive

Note: The directives are ignored by non-supporting
compiler or if OpenMP-flag is turned off in compiling.
=> Portable code between single CPU, multi-core,
and general parallel computers.

Also, possible to parallelize code incrementally
(start with heaviest routine and continue until sufficient
parallelism and performance are achivied) 27

Parallel: (Fork-Join)

!$omp parallel [clauses]
 “parallel code”
!$omp end parallel

If no clauses, all data shared (global) and all
code executed in parallel by all threads. At the end
of parallel the threads are synchronized and joined.

Ex: program p1
 ...
 call fred()
 !$omp parallel
 call billy()
 !$omp end parallel
 call daisy()

fred()

billy() – all execute

daisy()

master

28

Serial sections

!$omp single [clauses]
The code-block within single is executed only by one
thread, the others skip and wait at the end of block.
Clauses: - private
 - firstprivate

!$omp master
The code-block is executed only by master thread,
the other skip and continue (no barrier).

29

Data sharing:

• shared([list of variables]) - default
• private([list of variables])

Ex: program p2
 ...
 a=10; b=0;
 !$omp parallel private(a)
 a=a+10
 b=b+a
 !$omp end parallel
 write(*,*) a,b

What is the result (assume 4 threads)?
30

Note: All private variables are allocated on the stack
 => uninitialized at entry and removed at exit,
 original a not equal to private a!

Note2: Shared variables must be protected from
 simultaneous writes by different threads!
 (Use a critical section directive or spinlock.)

• firstprivate([list of variables])
 As private but the variables are initialized from the
 original variable (in master) before parallel.

• lastprivate([list of variables])
 At exit, the original variable gets the value from the
 thread executing the last iteration in a loop using the
 do-directive or the last section in the sections-directive.

31

Data sharing:

Ex: program p2
 ...
 a=10; b=0;
 !$omp parallel firstprivate(a)

 a=a+10

 !$omp critical
 b=b+a
 !$omp end critical

 !$omp end parallel

 write(*,*) a,b

A fixed program

32

Add firstprivate

Add critical
section. (more
on this later)

#include <stdio.h>
#include <unistd.h>
#include <omp.h>

int main(void) {

#pragma omp parallel
 {

 sleep(omp_get_thread_num()+1);

 printf("I am slave thread %d\n",omp_get_thread_num());

#pragma omp barrier

 printf("I am still slave thread %d\n",omp_get_thread_num());

 }

 return 0;

Hack to order the threads

Barriers

33

I am slave thread 0
I am slave thread 1
I am slave thread 2
I am slave thread 3
I am still slave thread 3
I am still slave thread 0
I am still slave thread 2
I am still slave thread 1

I am slave thread 0
I am still slave thread 0
I am slave thread 1
I am still slave thread 1
I am slave thread 2
I am still slave thread 2
I am slave thread 3
I am still slave thread 3

With barrier Without barrier

Barrier,example

34

 int myid;

#pragma omp parallel shared(myid)
 {
 myid = omp_get_thread_num();
#pragma omp barrier
 printf("I am slave thread %d\n",myid);
 }

 printf("Making the variable private\n");

#pragma omp parallel private(myid)
 {
 myid = omp_get_thread_num();
#pragma omp barrier
 printf("I am slave thread %d\n",myid);
 }

Private/Shared example

35

 bash-3.1$./a.out
I am slave thread 1
I am slave thread 1
I am slave thread 1
I am slave thread 1
Making the variable private
I am slave thread 1
I am slave thread 3
I am slave thread 0
I am slave thread 2
bash-3.1$./a.out
I am slave thread 0
I am slave thread 0
I am slave thread 0
I am slave thread 0
Making the variable private
I am slave thread 1
I am slave thread 2
I am slave thread 3
I am slave thread 0

Depends on
the ordering
of the
threads!

Parallel execution

36

Worksharing (within parallel)

• Loop level parallelism – do/for
• Task parallelism - sections

do/for-directive:
 !$omp do [clauses]
 do i=1,n
 loop-body
 end do
 [!$omp end do]

Without clauses, loop counter is private, loop
space is divided statically into nthr equal pieces, and
run in parallel (different iterations in different threads).
Threads are synchronized at end of the for-directive.

i=1 i=n

thr 0 thr 1 thr 2 thr 3

Note: We must have a perfectly parallel loop! 37

Worksharing Clauses:

38

• Shared
• Private
• Firstprivate
• Lastprivate
• Reduction
• Schedule
• Ordered

Scalar product example

39

sum = 0.0;
for(i=0;i<N;i++)
 {
 sum += (a [i] + b[i]);
 }

printf("Scalar product is %f\n",sum);

for(i=0;i<N;i++)
 {
 a[i]+=b[i];
 }
sum = 0.0;
for(i=0;i<N;i++)
 sum += a[i];

printf("Scalar product is %f\n",sum);

Scalar product example

39

sum = 0.0;
for(i=0;i<N;i++)
 {
 sum += (a [i] + b[i]);
 }

printf("Scalar product is %f\n",sum);

for(i=0;i<N;i++)
 {
 a[i]+=b[i];
 }
sum = 0.0;
for(i=0;i<N;i++)
 sum += a[i];

printf("Scalar product is %f\n",sum);

Scalar product example

39

sum = 0.0;
for(i=0;i<N;i++)
 {
 sum += (a [i] + b[i]);
 }

printf("Scalar product is %f\n",sum);

Perfectly Parallel

printf("This is the master thread with ID %d\n",omp_get_thread_num());

#pragma omp parallel
 {
 printf("I am slave thread %d\n",omp_get_thread_num());
#pragma omp single
 {
 printf("Summing two vectors of size %d in parallel\n",N);
 }
#pragma omp for
 for(i=0;i<N;i++) {
 a[i]+=b[i];
 }
 } /* End of parallel region */

 sum = 0.0;
 for(i=0;i<N;i++)
 sum+=a[i];
 printf("This is the master thread again with ID %d\n",omp_get_thread_num());
 printf("Array sum is %f\n",sum);

 return 0;
}

Automatic or implicit barrier

Worksharing example

40

 $./a.out
 This is the master thread with ID 0
 I am slave thread 2
 Summing two vectors of size 1000 in parallel
 I am slave thread 0
 I am slave thread 3
 I am slave thread 1
 This is the master thread again with ID 0
 Array sum is 5.005000e+05
 $

Notice the
ordering of
the printouts

Init a,b to
a[:] = 0.0
b[:] = 1..1000

Parallel execution

41

#pragma omp parallel for shared(a,b) private(i)
 for(i=0;i<N;i++) {
 a[i]+=b[i];
 }
 } /* End of parallel region */

 sum = 0.0;
 for(i=0;i<N;i++)
 sum+=a[i];

 printf("Array sum is %f\n",sum);

 return 0;
}

Worksharing example

42

Parallel region and worksharing

CPU 1 CPU 2 CPU 3 CPU 4

Local
Sum

Communicate and sum to form p
copies of scalar product

+ + +

Example: parallel scalar product

43

• Create a local sum per thread and the sum them
together

• How do we create a local variable?

• If its local how can we sum them together. The other
threads does know about it?

• Answer: use a reduction clause

Parallel scalar product

44

sum = 0.0;
#pragma omp parallel shared(sum)
 {
 printf("I am slave thread %d\n",omp_get_thread_num());

#pragma omp single
 {
 printf("Summing two vectors of size %N in parallel\n",N);
 }

#pragma omp for reduction(+:sum)
 for(i=0;i<N;i++) {
 sum += a[i] * b[i];
 }

 } /* end of parallel region */

Creates a local
copy of sum, and
combines the local
copies using the “+”
operator ar the end
of the loop

Adding a reduction clause

45

 $./a.out
 This is the master thread with ID 0
 I am slave thread 2
 I am slave thread 1
 I am slave thread 0
 I am slave thread 3
 Summing two vectors of size 1000 in parallel
 This is the master thread again with ID 0
 Array sum is 5.005000e+05
 $

Notice the
ordering of
the printouts

Parallel execution

46

Schedule(type, [size])

type=static:
i=1 i=n

t=0 t=1 t=2 t=0 t=1 t=2

size Assign the chunks
cyclicly to threads

i=1 i=n

t=0 t=1 t=2 t=1 t=2 t=0

size

type=dynamic:
Dynamic scheduling, as
soon as a thread is ready
it gets a new chunk

47

Divides the iteration space into chunks=size and
schedules the chunks to threads according to type.
(size=n/nthr by default)

i=1 i=n

t=0 t=1 2 1 2 0

size

type=guided:

As dynamic but the chunk size
is decreasing exponentially.
Minimizes synchronization time.

n/nthr

type=runtime:

Decide at runtime using the environment variable
export schedule=type (where type is some above)
or let the compiler decide (don't set schedule).

Note: Static scheduling is good for data locality (cache)
while dynamic/guided good for load balance.

48

CALL COMPUTE(LB,UB,NUM_THREADS)
!$OMP PARALLEL PRIVATE(J,ID)
 ID = OMP_GET_THREAD_NUM()
 DO J=LB(ID),UB(ID)
 A(J)=WORK(A(J))
 END DO
!$OMP END PARALLEL

Ex: !$OMP PARALLEL DO SCHEDULE
 DO J=1,N
 A(J)=WORK(A(J))
 END DO

Assume irregular work load, using
static => load imbalance
dynamic,1 => cache misses

Explicit load balancing:

Explicit user supplied load balancing:

49

Sections

!$omp sections [subdirectives]

 !$omp section
 task 1
 !$omp end section

 !$omp section
 task 2
 !$omp end section

 etc.
!$omp end sections

The sections/tasks are scheduled (statically) to the
threads and run in parallel. At end of sections the
threads are synchronized. (No load balancing).

Subdirectives:
• Private
• Firstprivate
• Lastprivate
• Reduction

50

CALL OMP_SET_NESTED(.TRUE.)
!$OMP PARALLEL SECTIONS OMP_NUM_THREADS(2)

 !$OMP SECTION
 !$OMP PARALLEL DO OMP_NUM_THREADS(P1)
 DO K=1,N
 call WORK1(A(K))
 END DO
 !$OMP END SECTION

 !$OMP SECTION
 !$OMP PARALLEL DO OMP_NUM_THREADS(P2)
 DO K=1,N
 call WORK2(A(K))
 END DO
 !$OMP END SECTION

!$OMP END PARALLEL SECTIONS

Nested parallelism (load balancing of sections)

Assign appropriate number of threads to each section.
51

Synchronization

Done implicitly at end of:
 - parallel
 - do/for
 - sections
 - single
Can override with nowait:
 !$omp do
 do i=1,n
 code
 end do
 !$omp end do nowait

Explicit barrier:
!$omp barrier

Barrier

52

The code-block is executed by one thread at a time.
As ordered but no predefined order.
If no name all critical sections have the same name.
Only one critical section with the same name can be
executed by one thread at a time.

!$omp atomic
Atomic update by one thread at a time. As
critical but applies only for a one line
expression.

53

!$omp critical [name]

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
#define NRA 8 /* number of rows in matrix A */
#define NCA 552 /* number of columns in matrix A */
#define NCB 23 /* number of columns in matrix B */
int main (int argc, char *argv[]) {
 int tid, nthreads, i, j, k, chunk;
 double a[NRA][NCA], /* matrix A to be multiplied */
 b[NCA][NCB], /* matrix B to be multiplied */
 c[NRA][NCB]; /* result matrix C */

/*** Spawn a parallel region explicitly scoping all variables ***/
#pragma omp parallel shared(a,b,c,nthreads) private(tid,i,j,k)
 {
 tid = omp_get_thread_num();
 if (tid == 0) {
 nthreads = omp_get_num_threads();
 printf("Starting matrix multiple example with %d threads\n",nthreads);
 printf("Initializing matrices...\n");
 }

Matrix-Multiply example

54

/*** Initialize matrices ***/

#pragma omp for
 for (i=0; i<NRA; i++)
 for (j=0; j<NCA; j++)
 a[i][j]= i+j;

#pragma omp for
 for (i=0; i<NCA; i++)
 for (j=0; j<NCB; j++)
 b[i][j]= i*j;

#pragma omp for
 for (i=0; i<NRA; i++)
 for (j=0; j<NCB; j++)
 c[i][j]= 0;

Matrix-Multiply example

55

/*** Do matrix multiply sharing iterations on outer loop ***/
/*** Display who does which iterations for demonstration purposes ***/

printf("Thread %d starting matrix multiply...\n",tid);
#pragma omp for
 for (i=0; i<NRA; i++) {
 printf("Thread=%d did row=%d\n",tid,i);
 for(j=0; j<NCB; j++)
 for (k=0; k<NCA; k++)
 c[i][j] += a[i][k] * b[k][j];
 }
} /*** End of parallel region ***/
/*** Print results ***/
printf("Result Matrix:\n");
for (i=0; i<NRA; i++) {
 for (j=0; j<NCB; j++)
 printf("%6.2f ", c[i][j]);
 printf("\n");
}
printf ("Done.\n");

Variables j
and k must
be private

Matrix-Multiply example

56

Starting matrix multiple example with 4 threads
Initializing matrices...
Thread 0 starting matrix multiply...
Thread=0 did row=0
Thread 1 starting matrix multiply...
Thread=1 did row=2
Thread 2 starting matrix multiply...
Thread=2 did row=4
Thread 3 starting matrix multiply...
Thread=3 did row=6
Thread=0 did row=1
Thread=1 did row=3
Thread=2 did row=5
Thread=3 did row=7

Outer loop is 8
elements. Two
columns per
thread.

Matrix-Multiply execution

57

do while (k <= maxit .and. error > tol)
 error = 0.0
!$omp parallel
!$omp workshare
 uold(i,j) = u(i,j) ! Copy new solution into old

! Compute stencil, residual, & update
!$omp do private(i,j,residual) reduction(+:error)
 do j = 2,m-1
 do i = 2,n-1
 residual = (ax*(uold(i-1,j) + uold(i+1,j)) + ay*(uold(i,j-1) + uold(i,j+1)) &
 + b * uold(i,j) - f(i,j))/b
! Update solution
 u(i,j) = uold(i,j) - residual
 error = error + residual*residual
 end do
 end do
!$omp enddo nowait
!$omp end parallel
 k = k + 1
 error = sqrt(error)/dble(n*m)
enddo ! End iteration loop

Automatically
creates loop and
parallelizes it

Jacobi example

58

OpenMP 3.0

• New standard
– Implementations are probably a year or so away

• Biggest revision
– Parallel tasks
– Break away from loop-centered parallelisation

• Lots of attention from the gaming industry
– Microsoft Visual Studio
– Xbox
– PC games

59

Cluster of CMP nodes

• MPI only
– Use network between the cluster nodes
– Use shared memory between the processes within the

node
– Processes within the node are wasting cycles waiting for

intra-node communication to complete
– Processes are heavyweight, can consume system

resources

• OpenMP only
– You can create a shared memory architecture in software
– Called Software Distributed Shared Memory Systems
– Intel sells a Cluster-OpenMP 60

Hybrid Parallelization

• Decompose your problem in coarse-grained pieces

• Map these to nodes using MPI

• Parallelize the operations within each process using
OpenMP
– Or calling a parallelized library

• Issues
– Thread-safe MPI implementations
– Load Balancing (setting the number of threads)
– Algorithmic issues (mapping your algorithm to your

system)
61

Hybrid Programming Models

• One-sided communication in MPI-2
– Read and write directly to the memory of another node

• Unified Parallel C (UPC)
– Divide the addess space into a shared and private part
– Partitioned Global Address Space (PGAS)
– Annotate your code to tell what is shared and what is

private
– Other variants: Co-Array Fortran, Titanium (Java)

• Still a research topic
– Used at the american labs (Livermore, Sandia..)
– Needs special hardware support 62

New Languages

• Fortress (Sun)
– Designed to be parallel (hidden from the programmer)
– Designed to support mathematical notation
– Partially available today

• X10 (IBM)
– Java-like PGAS
– Uses a virtual machine

• Chapel (Cray)
– Descendant of High Performance Fortan (HPF)

• Who knows?
63

Programming Multicores

• Given existing code
– Use parallelized libraries and components
– Add a little OpenMP
– Limited to a single CMP

• Starting a new project
– Use libraries and components (may not match)
– Use a hybrid model and algorithms taking the architecture

of the system into account
– MPI is never wrong but maybe not the most efficient

64

Performance obstacles in OpenMP:

• Non-parallelized regions, serial sections
Amdahl's law, Speedup < 1/s

• Load imbalance
Trivial or naïve load balancing with OpenMP directives

• Synchronization
Explicit/implicit barriers

• Cache misses => “communication”
True/false sharing

• Non-optimal data placement on NUMA
Costly remote memory accesses

65

