
An introduction to parallel algorithms

Knut Mørken

Department of Informatics
Centre of Mathematics for Applications

University of Oslo

Winter School on Parallel Computing
Geilo

January 20–25, 2008

1/26

1 Introduction

2 Parallel addition

3 Computing the dot product in parallel

4 Parallel matrix multiplication

5 Solving linear systems of equations in parallel

6 Conclusion

2/26

Adding n numbers

Suppose we have n real numbers (ai)
n
i=1 and want to compute

their sum s.
In mathematics

s =
n∑

i=1
ai .

On a computer
s = 0;
for i = 1, 2, . . . , n

s = s + ai ;

3/26

Adding n numbers

Suppose we have n real numbers (ai)
n
i=1 and want to compute

their sum s.
In mathematics

s =
n∑

i=1
ai .

On a computer
s = 0;
for i = 1, 2, . . . , n

s = s + ai ;

3/26

Algorithm

An algorithm is a precise prescription of how to accomplish a task.

Two important issues determine the character of an algorithm:

Which operations are available to us?
In which order can the operations be performed?

One at a time (sequentially).
Several at once (in parallel).

4/26

Algorithm

An algorithm is a precise prescription of how to accomplish a task.

Two important issues determine the character of an algorithm:

Which operations are available to us?

In which order can the operations be performed?

One at a time (sequentially).
Several at once (in parallel).

4/26

Algorithm

An algorithm is a precise prescription of how to accomplish a task.

Two important issues determine the character of an algorithm:

Which operations are available to us?
In which order can the operations be performed?

One at a time (sequentially).
Several at once (in parallel).

4/26

Algorithm

An algorithm is a precise prescription of how to accomplish a task.

Two important issues determine the character of an algorithm:

Which operations are available to us?
In which order can the operations be performed?

One at a time (sequentially).

Several at once (in parallel).

4/26

Algorithm

An algorithm is a precise prescription of how to accomplish a task.

Two important issues determine the character of an algorithm:

Which operations are available to us?
In which order can the operations be performed?

One at a time (sequentially).
Several at once (in parallel).

4/26

Primitive operations

We will assume that the basic operations available to us are
The four arithmetic operations (with two arguments)
Comparison of numbers (if-tests)
Elementary mathematical functions (trigonometric,
exponential, logarithms, roots, . . .)

We will measure computing time (complexity) by counting the
number of time steps necessary to complete all the arithmetic
operations of an algorithm.

5/26

Primitive operations

We will assume that the basic operations available to us are
The four arithmetic operations (with two arguments)
Comparison of numbers (if-tests)
Elementary mathematical functions (trigonometric,
exponential, logarithms, roots, . . .)

We will measure computing time (complexity) by counting the
number of time steps necessary to complete all the arithmetic
operations of an algorithm.

5/26

Order of operations

In traditional (sequential) programming it is assumed that a
computer can only perform one operation at a time.

Adding n numbers
s = 0;
for i = 1, 2, . . . , n

s = s + ai ;

Mathematically, however, many problems exhibit considerable
freedom in the order in which operations are performed.

6/26

Order of operations

In traditional (sequential) programming it is assumed that a
computer can only perform one operation at a time.

Adding n numbers
s = 0;
for i = 1, 2, . . . , n

s = s + ai ;

Mathematically, however, many problems exhibit considerable
freedom in the order in which operations are performed.

6/26

Order of operations

We can add the n numbers in any order
n∑

i=1
ai = aπ1 + aπ2 + · · ·+ aπn

where (π1, . . . , πn) is any permutation of the integers 1, . . . , n.

This can be exploited to speed up the addition if we have the
possibility of performing several operations simultaneously.

7/26

Parallel addition

Suppose that n = 10. Then we have

s = a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10,

8/26

Parallel addition

Suppose that n = 10. Then we have

s = a1 + a2︸ ︷︷ ︸
a1

1

+ a3 + a4︸ ︷︷ ︸
a1

2

+ a5 + a6︸ ︷︷ ︸
a1

3

+ a7 + a8︸ ︷︷ ︸
a1

4

+ a9 + a10︸ ︷︷ ︸
a1

5

,

8/26

Parallel addition

Suppose that n = 10. Then we have

s = a1 + a2︸ ︷︷ ︸
a1

1

+ a3 + a4︸ ︷︷ ︸
a1

2

+ a5 + a6︸ ︷︷ ︸
a1

3

+ a7 + a8︸ ︷︷ ︸
a1

4

+ a9 + a10︸ ︷︷ ︸
a1

5

,

= a1
1 + a1

2 + a1
3 + a1

4 + a1
5,

8/26

Parallel addition

Suppose that n = 10. Then we have

s = a1 + a2︸ ︷︷ ︸
a1

1

+ a3 + a4︸ ︷︷ ︸
a1

2

+ a5 + a6︸ ︷︷ ︸
a1

3

+ a7 + a8︸ ︷︷ ︸
a1

4

+ a9 + a10︸ ︷︷ ︸
a1

5

,

= a1
1 + a1

2︸ ︷︷ ︸
a2

1

+ a1
3 + a1

4︸ ︷︷ ︸
a2

2

+ a1
5︸︷︷︸

a2
3

,

8/26

Parallel addition

Suppose that n = 10. Then we have

s = a1 + a2︸ ︷︷ ︸
a1

1

+ a3 + a4︸ ︷︷ ︸
a1

2

+ a5 + a6︸ ︷︷ ︸
a1

3

+ a7 + a8︸ ︷︷ ︸
a1

4

+ a9 + a10︸ ︷︷ ︸
a1

5

,

= a1
1 + a1

2︸ ︷︷ ︸
a2

1

+ a1
3 + a1

4︸ ︷︷ ︸
a2

2

+ a1
5︸︷︷︸

a2
3

,

= a2
1 + a2

2 + a2
3,

8/26

Parallel addition

Suppose that n = 10. Then we have

s = a1 + a2︸ ︷︷ ︸
a1

1

+ a3 + a4︸ ︷︷ ︸
a1

2

+ a5 + a6︸ ︷︷ ︸
a1

3

+ a7 + a8︸ ︷︷ ︸
a1

4

+ a9 + a10︸ ︷︷ ︸
a1

5

,

= a1
1 + a1

2︸ ︷︷ ︸
a2

1

+ a1
3 + a1

4︸ ︷︷ ︸
a2

2

+ a1
5︸︷︷︸

a2
3

,

= a2
1 + a2

2︸ ︷︷ ︸
a3

1

+ a2
3︸︷︷︸

a3
2

,

8/26

Parallel addition

Suppose that n = 10. Then we have

s = a1 + a2︸ ︷︷ ︸
a1

1

+ a3 + a4︸ ︷︷ ︸
a1

2

+ a5 + a6︸ ︷︷ ︸
a1

3

+ a7 + a8︸ ︷︷ ︸
a1

4

+ a9 + a10︸ ︷︷ ︸
a1

5

,

= a1
1 + a1

2︸ ︷︷ ︸
a2

1

+ a1
3 + a1

4︸ ︷︷ ︸
a2

2

+ a1
5︸︷︷︸

a2
3

,

= a2
1 + a2

2︸ ︷︷ ︸
a3

1

+ a2
3︸︷︷︸

a3
2

,

= a3
1 + a3

2.

8/26

Parallel addition

This means that if we have 5 computing units at our disposal, we
can add the 10 numbers in 4 time steps.

In general, this technique allows us to add n numbers in dlog2 ne
time steps if we have n/2 computing units.

Adding n numbers
a0 = a;
for j = 1, 2, . . . , dlog2 ne

parallel: aj
i/2 = aj−1

i−1 + aj−1
i , i = 2, 4, 6, . . . , |aj−1|;

if |aj−1|% 2 > 0 then aj
−1 = aj−1

−1 ;

9/26

Parallel addition

This means that if we have 5 computing units at our disposal, we
can add the 10 numbers in 4 time steps.

In general, this technique allows us to add n numbers in dlog2 ne
time steps if we have n/2 computing units.

Adding n numbers
a0 = a;
for j = 1, 2, . . . , dlog2 ne

parallel: aj
i/2 = aj−1

i−1 + aj−1
i , i = 2, 4, 6, . . . , |aj−1|;

if |aj−1|% 2 > 0 then aj
−1 = aj−1

−1 ;

9/26

Parallel addition

This means that if we have 5 computing units at our disposal, we
can add the 10 numbers in 4 time steps.

In general, this technique allows us to add n numbers in dlog2 ne
time steps if we have n/2 computing units.

Adding n numbers
a0 = a;
for j = 1, 2, . . . , dlog2 ne

parallel: aj
i/2 = aj−1

i−1 + aj−1
i , i = 2, 4, 6, . . . , |aj−1|;

if |aj−1|% 2 > 0 then aj
−1 = aj−1

−1 ;

9/26

Parallel addition

There is a recursive version of the previous algorithm where each
function call is given to a new processor.

Adding n numbers (recursive version)
sum(a, n)
{

if n > 1 then
return(sum(a, 1, n//2) + sum(a, n//2 + 1, n))

else
return(a1);

}

10/26

Parallel computing in practice

Problem
Add 1000 integers, each with 5 digits.

Resources
This group of people.

Method
1 While more than one number:

1 I share out the numbers evenly, at least two numbers each
2 You add your numbers
3 You pass your results back to me

11/26

Parallel computing in practice

Problem
Add 1000 integers, each with 5 digits.

Resources
This group of people.

Method
1 While more than one number:

1 I share out the numbers evenly, at least two numbers each
2 You add your numbers
3 You pass your results back to me

11/26

Parallel computing in practice

Problem
Add 1000 integers, each with 5 digits.

Resources
This group of people.

Method
1 While more than one number:

1 I share out the numbers evenly, at least two numbers each
2 You add your numbers
3 You pass your results back to me

11/26

Dot product

If a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) then

a · b =
n∑

i=1
aibi .

Provided we have n processors this can be computed in
dlog2 ne+ 1 time steps:

Inner product
1 Compute the n products in parallel.
2 Compute the sum.

12/26

Dot product

If a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) then

a · b =
n∑

i=1
aibi .

Provided we have n processors this can be computed in
dlog2 ne+ 1 time steps:

Inner product
1 Compute the n products in parallel.
2 Compute the sum.

12/26

Matrix multiplication

Let A ∈ Rn,n and B ∈ Rn,n. Then the product AB is a matrix in
Rn,n which is given by

AB =


a1
a2
...

an


(
b1 b2 · · · bn

)

=


a1 · b1 a1 · b2 · · · a1 · bn
a2 · b1 a2 · b2 · · · a2 · bn

...
... . . . · · ·

an · b1 an · b2 · · · an · bn

 .

13/26

Parallel matrix multiplication

Recall that one dot product of length n can be computed in
dlog2 ne+ 1 time steps provided we have n processors at our
disposal.

Since all the n2 dot products in the matrix product are
independent, we can also compute AB in

dlog2 ne+ 1

time steps, provided we may use n3 processors.

14/26

Parallel matrix multiplication

Recall that one dot product of length n can be computed in
dlog2 ne+ 1 time steps provided we have n processors at our
disposal.

Since all the n2 dot products in the matrix product are
independent, we can also compute AB in

dlog2 ne+ 1

time steps, provided we may use n3 processors.

14/26

Parallel matrix multiplication

Alternative algorithm
Give each of the n2 dot products in

a1 · b1 a1 · b2 · · · a1 · bn
a2 · b1 a2 · b2 · · · a2 · bn

...
... . . . · · ·

an · b1 an · b2 · · · an · bn

 .

to different processors.

Accumulation of the dot product on one processor requires n time
steps, provided we have n2 processors.

15/26

Parallel matrix multiplication

Alternative algorithm
Give each of the n2 dot products in

a1 · b1 a1 · b2 · · · a1 · bn
a2 · b1 a2 · b2 · · · a2 · bn

...
... . . . · · ·

an · b1 an · b2 · · · an · bn

 .

to different processors.

Accumulation of the dot product on one processor requires n time
steps, provided we have n2 processors.

15/26

Strassen’s algorithm (sequential)

The product of the two block matrices(
C1,1 C1,2
C2,1 C2,2

)
=

(
A1,1 A1,2
A2,1 A2,2

)(
B1,1 B1,2
B2,1 B2,2

)

can be computed by first calculating

H1 = A1,1(B1,2 − B2,2),

H2 = A2,2(B2,1 − B1,1),

H3 = (A2,1 + A2,2)B1,1,

H4 = a2,2(B2,1 − B1,1),

H5 = (A1,1 + A2,2)(B1,1 + B2,2),

H6 = (A1,2 − A2,2)(B2,1 + B2,2),

H7 = (A1,1 − A2,1)(B1,1 + B1,2).

Then

C1,1 = H4 + H5 + H6 −H2,

C1,2 = H1,1 + H1,2,

C2,1 = H2,1 + H2,2,

C2,2 = H1 + H1 −H3 −H7.

16/26

Strassen’s algorithm (sequential)

The product of the two block matrices(
C1,1 C1,2
C2,1 C2,2

)
=

(
A1,1 A1,2
A2,1 A2,2

)(
B1,1 B1,2
B2,1 B2,2

)

can be computed by first calculating

H1 = A1,1(B1,2 − B2,2),

H2 = A2,2(B2,1 − B1,1),

H3 = (A2,1 + A2,2)B1,1,

H4 = a2,2(B2,1 − B1,1),

H5 = (A1,1 + A2,2)(B1,1 + B2,2),

H6 = (A1,2 − A2,2)(B2,1 + B2,2),

H7 = (A1,1 − A2,1)(B1,1 + B1,2).

Then

C1,1 = H4 + H5 + H6 −H2,

C1,2 = H1,1 + H1,2,

C2,1 = H2,1 + H2,2,

C2,2 = H1 + H1 −H3 −H7.

16/26

Strassen’s algorithm (sequential)

The product of the two block matrices(
C1,1 C1,2
C2,1 C2,2

)
=

(
A1,1 A1,2
A2,1 A2,2

)(
B1,1 B1,2
B2,1 B2,2

)

can be computed by first calculating

H1 = A1,1(B1,2 − B2,2),

H2 = A2,2(B2,1 − B1,1),

H3 = (A2,1 + A2,2)B1,1,

H4 = a2,2(B2,1 − B1,1),

H5 = (A1,1 + A2,2)(B1,1 + B2,2),

H6 = (A1,2 − A2,2)(B2,1 + B2,2),

H7 = (A1,1 − A2,1)(B1,1 + B1,2).

Then

C1,1 = H4 + H5 + H6 −H2,

C1,2 = H1,1 + H1,2,

C2,1 = H2,1 + H2,2,

C2,2 = H1 + H1 −H3 −H7.

16/26

Strassen’s algorithm (sequential)

The product of the two block matrices(
C1,1 C1,2
C2,1 C2,2

)
=

(
A1,1 A1,2
A2,1 A2,2

)(
B1,1 B1,2
B2,1 B2,2

)

can be computed by first calculating

H1 = A1,1(B1,2 − B2,2),

H2 = A2,2(B2,1 − B1,1),

H3 = (A2,1 + A2,2)B1,1,

H4 = a2,2(B2,1 − B1,1),

H5 = (A1,1 + A2,2)(B1,1 + B2,2),

H6 = (A1,2 − A2,2)(B2,1 + B2,2),

H7 = (A1,1 − A2,1)(B1,1 + B1,2).

Then

C1,1 = H4 + H5 + H6 −H2,

C1,2 = H1,1 + H1,2,

C2,1 = H2,1 + H2,2,

C2,2 = H1 + H1 −H3 −H7.

16/26

Strassen’s algorithm

Strassen’s algorithm may be applied recursively to multiply
together any two matrices.

Theorem (Complexity of Strassen’s algorithm)
If A and B are n × n matrices, then the (sequential) complexity of
Strassen’s algorithm is O(n2.71).

More elaborate algorithms exist that have complexity O(n2.376)
(Coppersmith-Winograd).

17/26

Strassen’s algorithm

Strassen’s algorithm may be applied recursively to multiply
together any two matrices.

Theorem (Complexity of Strassen’s algorithm)
If A and B are n × n matrices, then the (sequential) complexity of
Strassen’s algorithm is O(n2.71).

More elaborate algorithms exist that have complexity O(n2.376)
(Coppersmith-Winograd).

17/26

Complexity of matrix algorithms

Theorem (Equivalence of matrix operations)
Matrix multiplication, computation of determinants, matrix
inversion and solution of a linear system of equations all have the
same computational complexity (sequential and parallel).

18/26

Solving linear systems of equations

The standard Gaussian elimination algorithm is a bit cumbersome
to parallelise, we therefore consider a classical iterative algorithm
instead.

19/26

Solving linear systems of equations

Suppose we have the linear system of equations

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1,

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2,

...
an,1x1 + an,2x2 + · · ·+ an,nxn = bn.

If ai ,i 6= 0 for i = 1, . . . , n, then we can solve equation i for xi ,

x1 = (b1 − a1,2x2 − a1,3x3 − · · · − a1,nxn)/a1,1,

x2 = (b2 − a2,1x1 − a2,3x3 − · · · − a2,nxn)/a2,2,

...
xn = (bn − an,1x1 − an,2x2 − · · · − an,n−1xn−1)/an,n.

20/26

Solving linear systems of equations

Suppose we have the linear system of equations

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1,

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2,

...
an,1x1 + an,2x2 + · · ·+ an,nxn = bn.

If ai ,i 6= 0 for i = 1, . . . , n, then we can solve equation i for xi ,

x1 = (b1 − a1,2x2 − a1,3x3 − · · · − a1,nxn)/a1,1,

x2 = (b2 − a2,1x1 − a2,3x3 − · · · − a2,nxn)/a2,2,

...
xn = (bn − an,1x1 − an,2x2 − · · · − an,n−1xn−1)/an,n.

20/26

Solving linear systems of equations

Suppose we have the linear system of equations

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1,

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2,

...
an,1x1 + an,2x2 + · · ·+ an,nxn = bn.

If ai ,i 6= 0 for i = 1, . . . , n, then we can solve equation i for xi ,

x1 = (b1 − a1,2x2 − a1,3x3 − · · · − a1,nxn)/a1,1,

x2 = (b2 − a2,1x1 − a2,3x3 − · · · − a2,nxn)/a2,2,

...

xn = (bn − an,1x1 − an,2x2 − · · · − an,n−1xn−1)/an,n.

20/26

Solving linear systems of equations

Suppose we have the linear system of equations

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1,

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2,

...
an,1x1 + an,2x2 + · · ·+ an,nxn = bn.

If ai ,i 6= 0 for i = 1, . . . , n, then we can solve equation i for xi ,

x1 = (b1 − a1,2x2 − a1,3x3 − · · · − a1,nxn)/a1,1,

x2 = (b2 − a2,1x1 − a2,3x3 − · · · − a2,nxn)/a2,2,

...
xn = (bn − an,1x1 − an,2x2 − · · · − an,n−1xn−1)/an,n.

20/26

Solving linear systems of equations

x1 = (b1 − a1,2x2 − a1,3x3 − · · · − a1,nxn)/a1,1

x2 = (b2 − a2,1x1 − a2,3x3 − · · · − a2,nxn)/a2,2
...

xn = (bn − an,1x1 − an,2x2 − · · · − an,n−1xn−1)/an,n

If we choose an initial estimate x0 for the solution, we can use
these equations to compute a new estimate x1, then x2 etc. This
is called Jacobi’s method.

Under suitable conditions on the coefficient matrix these iterations
will converge to the true solution.

Note that if the calculations are performed sequentially, we may
make use of the new values of x1, x2, . . . , xi−1 when we compute
xi ; this is called Gaus-Seidel iteration and converges faster than
Jacobi iteration.

21/26

Solving linear systems of equations

x1 = (b1 − a1,2x2 − a1,3x3 − · · · − a1,nxn)/a1,1

x2 = (b2 − a2,1x1 − a2,3x3 − · · · − a2,nxn)/a2,2
...

xn = (bn − an,1x1 − an,2x2 − · · · − an,n−1xn−1)/an,n

If we choose an initial estimate x0 for the solution, we can use
these equations to compute a new estimate x1, then x2 etc. This
is called Jacobi’s method.

Under suitable conditions on the coefficient matrix these iterations
will converge to the true solution.

Note that if the calculations are performed sequentially, we may
make use of the new values of x1, x2, . . . , xi−1 when we compute
xi ; this is called Gaus-Seidel iteration and converges faster than
Jacobi iteration.

21/26

Solving linear systems of equations

x1 = (b1 − a1,2x2 − a1,3x3 − · · · − a1,nxn)/a1,1

x2 = (b2 − a2,1x1 − a2,3x3 − · · · − a2,nxn)/a2,2
...

xn = (bn − an,1x1 − an,2x2 − · · · − an,n−1xn−1)/an,n

If we choose an initial estimate x0 for the solution, we can use
these equations to compute a new estimate x1, then x2 etc. This
is called Jacobi’s method.

Under suitable conditions on the coefficient matrix these iterations
will converge to the true solution.

Note that if the calculations are performed sequentially, we may
make use of the new values of x1, x2, . . . , xi−1 when we compute
xi ; this is called Gaus-Seidel iteration and converges faster than
Jacobi iteration.

21/26

Jacobi’s method in parallel

Jacobi’s method is perfect for parallel implementation:

x1 = (b1 − a1,2x2 − a1,3x3 − · · · − a1,nxn)/a1,1

x2 = (b2 − a2,1x1 − a2,3x3 − · · · − a2,nxn)/a2,2
...

xn = (bn − an,1x1 − an,2x2 − · · · − an,n−1xn−1)/an,n

Each of n processors is given the task of computing one xi .
Requires n time steps per iteration.

22/26

Jacobi’s method in parallel

Jacobi’s method is perfect for parallel implementation:

x1 = (b1 − a1,2x2 − a1,3x3 − · · · − a1,nxn)/a1,1

x2 = (b2 − a2,1x1 − a2,3x3 − · · · − a2,nxn)/a2,2
...

xn = (bn − an,1x1 − an,2x2 − · · · − an,n−1xn−1)/an,n

Each of n processors is given the task of computing one xi .
Requires n time steps per iteration.

22/26

Hybrid Jacobi/Gaus-Seidel

Suppose the system has dimension 100 000 and we only have 1000
processors. Assume that an initial solution x0 is given.

First iteration:

1 For i = 1, 2, . . . , 100:

1 Set j1 = 1000i + 1 and j2 = 1000(i + 1)
2 Give equations j1, . . . , j2 to the processors
3 Compute x1

j1 , . . . , x1
j2 from x1

1 , . . . , x1
j1−1, x0

j1 , . . . , x
0
n

Repeat until convergence.

23/26

Hybrid Jacobi/Gaus-Seidel

Suppose the system has dimension 100 000 and we only have 1000
processors. Assume that an initial solution x0 is given.

First iteration:
1 For i = 1, 2, . . . , 100:

1 Set j1 = 1000i + 1 and j2 = 1000(i + 1)
2 Give equations j1, . . . , j2 to the processors
3 Compute x1

j1 , . . . , x1
j2 from x1

1 , . . . , x1
j1−1, x0

j1 , . . . , x
0
n

Repeat until convergence.

23/26

Hybrid Jacobi/Gaus-Seidel

Suppose the system has dimension 100 000 and we only have 1000
processors. Assume that an initial solution x0 is given.

First iteration:
1 For i = 1, 2, . . . , 100:

1 Set j1 = 1000i + 1 and j2 = 1000(i + 1)

2 Give equations j1, . . . , j2 to the processors
3 Compute x1

j1 , . . . , x1
j2 from x1

1 , . . . , x1
j1−1, x0

j1 , . . . , x
0
n

Repeat until convergence.

23/26

Hybrid Jacobi/Gaus-Seidel

Suppose the system has dimension 100 000 and we only have 1000
processors. Assume that an initial solution x0 is given.

First iteration:
1 For i = 1, 2, . . . , 100:

1 Set j1 = 1000i + 1 and j2 = 1000(i + 1)
2 Give equations j1, . . . , j2 to the processors

3 Compute x1
j1 , . . . , x1

j2 from x1
1 , . . . , x1

j1−1, x0
j1 , . . . , x

0
n

Repeat until convergence.

23/26

Hybrid Jacobi/Gaus-Seidel

Suppose the system has dimension 100 000 and we only have 1000
processors. Assume that an initial solution x0 is given.

First iteration:
1 For i = 1, 2, . . . , 100:

1 Set j1 = 1000i + 1 and j2 = 1000(i + 1)
2 Give equations j1, . . . , j2 to the processors
3 Compute x1

j1 , . . . , x1
j2 from x1

1 , . . . , x1
j1−1, x0

j1 , . . . , x
0
n

Repeat until convergence.

23/26

Hybrid Jacobi/Gaus-Seidel

Suppose the system has dimension 100 000 and we only have 1000
processors. Assume that an initial solution x0 is given.

First iteration:
1 For i = 1, 2, . . . , 100:

1 Set j1 = 1000i + 1 and j2 = 1000(i + 1)
2 Give equations j1, . . . , j2 to the processors
3 Compute x1

j1 , . . . , x1
j2 from x1

1 , . . . , x1
j1−1, x0

j1 , . . . , x
0
n

Repeat until convergence.

23/26

Hybrid Jacobi/Gaus-Seidel

Suppose the system has dimension 100 000 and we only have 1000
processors. Assume that an initial solution x0 is given.

First iteration:
1 For i = 1, 2, . . . , 100:

1 Set j1 = 1000i + 1 and j2 = 1000(i + 1)
2 Give equations j1, . . . , j2 to the processors
3 Compute x1

j1 , . . . , x1
j2 from x1

1 , . . . , x1
j1−1, x0

j1 , . . . , x
0
n

Repeat until convergence.

23/26

Conclusion

The number of time steps in many (mathematical) operations can
be reduced considerably if multiple operations can be performed
simultaneously.

Often other algorithms than the traditional sequential ones are the
most efficient.

The actual choice of algorithm is usually highly dependent on the
type of processor and how memory is organised.

24/26

Conclusion

The number of time steps in many (mathematical) operations can
be reduced considerably if multiple operations can be performed
simultaneously.

Often other algorithms than the traditional sequential ones are the
most efficient.

The actual choice of algorithm is usually highly dependent on the
type of processor and how memory is organised.

24/26

Conclusion

The number of time steps in many (mathematical) operations can
be reduced considerably if multiple operations can be performed
simultaneously.

Often other algorithms than the traditional sequential ones are the
most efficient.

The actual choice of algorithm is usually highly dependent on the
type of processor and how memory is organised.

24/26

Parallel computing in practice

Problem
Add 1000 integers, each with 5 digits.

Resources
This group of people.

Method
1 While more than one number:

1 I share out the numbers evenly, at least two numbers each
2 You add your numbers
3 You pass your results back to me

25/26

Parallel computing in practice

Problem
Add 1000 integers, each with 5 digits.

Resources
This group of people.

Method
1 While more than one number:

1 I share out the numbers evenly, at least two numbers each
2 You add your numbers
3 You pass your results back to me

25/26

Parallel computing in practice

Problem
Add 1000 integers, each with 5 digits.

Resources
This group of people.

Method
1 While more than one number:

1 I share out the numbers evenly, at least two numbers each
2 You add your numbers
3 You pass your results back to me

25/26

Parallel computing in practice

Method (intelligent)
Assumption: You are arranged in a strict hierarchy

1 I share out the numbers evenly

2 While more than one active computer:

1 You add your numbers
2 You pass your result to someone more important than you

3 I receive the result from my top assistant

The intelligence and communication skills of our processors are
important, not just their computational skills.

26/26

Parallel computing in practice

Method (intelligent)
Assumption: You are arranged in a strict hierarchy

1 I share out the numbers evenly
2 While more than one active computer:

1 You add your numbers
2 You pass your result to someone more important than you

3 I receive the result from my top assistant

The intelligence and communication skills of our processors are
important, not just their computational skills.

26/26

Parallel computing in practice

Method (intelligent)
Assumption: You are arranged in a strict hierarchy

1 I share out the numbers evenly
2 While more than one active computer:

1 You add your numbers

2 You pass your result to someone more important than you
3 I receive the result from my top assistant

The intelligence and communication skills of our processors are
important, not just their computational skills.

26/26

Parallel computing in practice

Method (intelligent)
Assumption: You are arranged in a strict hierarchy

1 I share out the numbers evenly
2 While more than one active computer:

1 You add your numbers
2 You pass your result to someone more important than you

3 I receive the result from my top assistant

The intelligence and communication skills of our processors are
important, not just their computational skills.

26/26

Parallel computing in practice

Method (intelligent)
Assumption: You are arranged in a strict hierarchy

1 I share out the numbers evenly
2 While more than one active computer:

1 You add your numbers
2 You pass your result to someone more important than you

3 I receive the result from my top assistant

The intelligence and communication skills of our processors are
important, not just their computational skills.

26/26

Parallel computing in practice

Method (intelligent)
Assumption: You are arranged in a strict hierarchy

1 I share out the numbers evenly
2 While more than one active computer:

1 You add your numbers
2 You pass your result to someone more important than you

3 I receive the result from my top assistant

The intelligence and communication skills of our processors are
important, not just their computational skills.

26/26

Parallel computing in practice

Method (intelligent)
Assumption: You are arranged in a strict hierarchy

1 I share out the numbers evenly
2 While more than one active computer:

1 You add your numbers
2 You pass your result to someone more important than you

3 I receive the result from my top assistant

The intelligence and communication skills of our processors are
important, not just their computational skills.

26/26

	Introduction
	Parallel addition
	Computing the dot product in parallel
	Parallel matrix multiplication
	Solving linear systems of equations in parallel
	Conclusion

