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Presentation plan
n Reflect briefly on progress in high-end scientific computing 

� as captured in Gordon Bell prize trends
� as forecast in petascale architecture projects (from DOE labs in USA)
� as illustrated on physical applications based on partial differential 

equations (PDEs)

n Peek briefly at some motivating applications
� Bell Prizes: mechanics, seismology, aerodynamics

n Look generically at PDE-based simulation and the basis of 
continued optimism for its growth – capability-wise

n Look at some specific hurdles to PDE-based simulation posed by 
high-end architecture
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Technical aspects of presentation
n Introduce a parameterized highly tunable class of 

algorithms for parallel implicit solution of PDEs: 
“Newton-Krylov-Schwarz” (ca. 1993)
� understand the source of their “weak scalability”
� understand their lack of “strong scalability”
� understand why explicit algorithms generally do not scale, 

even weakly, in the high spatial resolution limit

n Note some algorithmic “adaptations” to architectural 
stresses
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Philosophy of presentation
n Applications are given (as function of time)
n Architectures (hardware and software) are given (as 

function of time)
n Algorithms must be adapted or created to bridge to 

“hostile” architectures for the sake of the applications
n Knowledge of algorithmic capabilities can usefully 

influence 
� the way applications are formulated
� the way architectures are constructed

n Knowledge of application and architectural opportunities 
can usefully influence algorithmic development
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Gedanken experiment:
How to use a jar of peanut butter as its price 

slides downward?
n In 2007, at $3.20: make sandwiches
n By 2010, at $0.80: make recipe 

substitutions for other oils
n By 2013, at $0.20: use as feedstock 

for biopolymers, plastics, etc.
n By 2016, at $0.05: heat homes
n By 2019, at $0.0125: pave roads ☺

The cost of computing has been on a curve much better than this
for two decades and promises to continue for at least one more. 
Like everyone else, scientists should plan increasing uses for it…
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Gordon Bell Prize: “price performance”
    
Year  Application  System $ per Mflops 
1989  Reservoir modeling CM-2 2,500
1990  Electronic structure IPSC 1,250
1992  Polymer dynamics cluster 1,000
1993  Image analysis custom 154
1994  Quant molecular dyn cluster 333
1995  Comp fluid dynamics cluster 278
1996  Electronic structure SGI 159
1997  Gravitation cluster 56
1998  Quant chromodyn custom 12.5
1999  Gravitation custom 6.9
2000  Comp fluid dynamics cluster 1.9
2001  Structural analysis cluster 0.24

 

Four orders 
of magnitude 
in 12 years 

recent: submissions received for as little as $.03 per Mflop/s using GPUs
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Gordon Bell Prize “peak performance”

Five orders of 
magnitude in 
17 years

   
Year Type Application No. Procs System Gflop/s 
1988 PDE Structures 8 Cray Y-MP 1.0  
1989 PDE Seismic 2,048 CM-2 5.6 
1990 PDE Seismic 2,048 CM-2 14 
1992 NB Gravitation 512 Delta  5.4
1993 MC Boltzmann 1,024 CM-5 60 
1994 IE Structures 1,904 Paragon 143 
1995 MC QCD 128 NWT 179 
1996 PDE CFD 160 NWT 111 
1997 NB Gravitation 4,096 ASCI Red 170 
1998 MD Magnetism 1,536 T3E-1200 1,020 
1999 PDE CFD 5,832 ASCI BluePac 627 
2000 NB Gravitation 96 GRAPE-6 1,349  
2001 NB Gravitation 1,024 GRAPE-6 11,550 
2002 PDE Climate 5,120 Earth Sim 26,500 
2003 PDE Seismic 1,944 Earth Sim 5,000
2004 PDE CFD 4,096 Earth Sim 15,200
2005 MD Solidification 131,072 BG/L 101,700
2006 MD Elec. Struct. 131,072 BG/L 207,000
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Gordon Bell Prize outpaces Moore’s Law

Gordon Moore

Gordon Bell

<<Demi Moore>>

CONCUR-
RENCY!!!

Four orders 
of magnitude 
in 13 years
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Whimsical remarks on simulation 
progress measured by Bell, since 1988

n If similar improvements in speed (105) had been realized 
in the airline industry, a 15-hour flight (e.g., JFK-BOM) 
would require one-half of a second today

n If similar improvements in storage (104) had been realized 
in the publishing industry, our office bookcases could 
hold the book portion of the collection of the U.S. Library 
of Congress (~20M volumes)

n If similar reductions in cost (104) had been realized in the 
higher education industry, tuition room and board (at a 
college in the USA) would cost about $2 per year
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Some platforms capable 
of peak petaflop/s by 2009

< $100MBG

Including 288TB

~2.3MWP.01-.03212,992 cpus
1.4x to PF

294,912 cpus

Blue Gene L/P 

> $150Mx86

+memory

~6MWx86QC2.6-8.014,240 cpus
6x to PF

~84,000 cpus

Clusters 
x86-64/AMD64

>$170MP6

+memory

~9.4MWP61.312,208 cpus
6x to PF

~72,000 cpus

IBM Power5/6

>$150MXT4

+memory

~8MWXT4~.1 - ~123,016 cpus
4x to PF

~100,000 cpus

Cray XT3/XT4

Estimated 
System

Cost

Power
Consumption 

@ PF

Failures 
per Month

Per TF

Scale
Demonstrated
Factor to PF

c/o Rick Stevens, Argonne National Lab (modified by K, Dec’07)



IBM’s BlueGene/P: 72K 
quad-core procs w/ 2 
FMADD @ 850 MHz              
= 1.008 Pflop/s

13.6 GF/s
8 MB EDRAM

4 processors

1 chip

13.6 GF/s
2 GB DDRAM

32 compute cards

435 GF/s
64 GB 

32 node cards

72 racks

1 PF/s
144 TB 

Rack

System

Node Card

Compute Card

Chip

14 TF/s
2 TB 

Thread concurrency:         
288K (or 294,912) processors

On the floor at Argonne 
National Laboratory      
by early 2009

Probably the first petascale machine…
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What will petaflop/s machines look like?
n Many paths beyond silicon, but not in 5 years, at petascale
n BG/P will likely be the first “general purpose” Pflop/s 

machine; other specialized machines may reach earlier
n Beyond BG/P, at least for PDE-based scientific codes:

� programming model will still be message-passing (due to 
large legacy code base), adapted to multicore processors 
beneath the MPI interface

n Earliest and most significant device improvement will be 
nanotech memory – but not for earliest Pflop/s machines
� up to tens of GB on a 1cm-square die
� will deal directly with the “memory wall” problem
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How much parallelism will be required to 
routinely sustain 1 petaflop/s

n Realistically, applications max out at about 25% (PDE) to 50% 
(MD) of peak (after great effort at tuning by experts)

n Hypothetical low power machines will feature 1.6M to 6.6M
way parallelism
� 32-64 cores per processor and up to 2-4 threads per core
� Assume 25.6K nodes, each with 1 processor socket 

n Hypothetical Intel terascale chip petascale system yields 1.5M
way parallelism
� 80 cores per processor
� Assume 4,608 nodes each with 4 processor sockets

n This is about 8 to 32 times the concurrency of today’s largest 
BlueGene/L!

c/o Mark Seager, Lawrence Livermore National Lab
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Roadrunner architecture

8,640 dual-core Opterons
Ö 76 Teraflop/s

16,560 Cell eDP chips
Ö 1.7 Petaflop/s

One Accelerated Node
Cell
eDP

IB 4x
1GB/s

IB 4x
PCIe

IB 4x
PCIe

IB 4x
HTX

IB 4x
1GB/s

AMD

AMD

AMD

AMDIB 4x
Repeater

IB 4x
1GB/s

4 separate independently
attached Cell Blades

Cell
eDP

IB 4x
HSDC

Cell blade IBM x3755 node
Blade chassis 1 Cell processor per Opteron core

“plan of record” for 2008 Cell-accelerated system

2nd stage InfiniBand interconnect (8 switches)
18 x 8 sets 18 x 8 sets

15 connected
clusters

552 Cell eDP blades
(138 compute nodes)

144 Opteron x3755
8-way nodes

IB switch

144

4 x 138

IB switch

144

4 x 138

c/o Ken Koch, Los Alamos National Lab
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Programming Roadrunner
n Computational Library (ALF w/ IBM)

� Task & work block queuing & management
� Streaming & user-defined data partitioning
� Process management
� Error handling

n Communication Library (DaCS w/ IBM)
� Data movement & synchronization
� Process management & synchronization
� Topology description
� Error handling
� First implementation may leverage OpenMPI

n Longer term
� ALF & DaCS support in tools
� ALF from Opteron ⇒ Cell directly
� Compilers supporting some of this

DaCS or
OpenMPI

ALF &
libSPE

OpenMPI

x86 
compiler

PowerPC 
compiler

SPE 
compiler

OpteronOpteron

PPEPPE

SPE (8)SPE (8)

ClusterCluster

c/o Ken Koch, Los Alamos National Lab
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“Ecosystem” for High Performance Computing
From the 2005 National Research Council Report on “The Future of 

Supercomputing”:

n Platforms, software, institutions, applications, and people who solve 
supercomputing applications can be thought of collectively as an ecosystem

n Research investment in HPC should be informed by the ecosystem point of 
view - progress must come on a broad front of interrelated technologies, 
rather than in the form of individual breakthroughs.

Pond ecosystem image from 
http://www.tpwd.state.tx.us/
expltx/eft/txwild/pond.htm

c/o Horst Simon, Lawrence Berkeley National Lab
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US DOE labs with petascale roadmaps

Lawrence Berkeley
Argonne

Oak Ridge

DOE Science Lab

Lawrence Livermore

Los Alamos

Sandia

DOE Defense Lab



Geilo, 21 Jan 2008

Progress in scaling PDE applications
n Both structured and unstructured grids
n Both explicit and implicit methods
n Fine spatial resolution (through mesh adaptivity)
n Many-thousand-fold concurrency
n Strong scaling within modest ranges
n Weak scaling without obvious limits

See, e.g., Gordon Bell “special” prizes in recent years …
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2004 Gordon Bell “special” prize

Cortical 
bone

Trabecular 
bone

n 2004 Bell Prize in “special category” went to an implicit, unstructured 
grid bone mechanics simulation
� 0.5 Tflop/s sustained on 4 thousand procs of IBM’s ASCI White
� 0.5 billion degrees of freedom
� large-deformation analysis
� employed in NIH bone research at Berkeley

c/o M. Adams, Columbia
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2003 Gordon Bell “special” prize
n 2003 Bell Prize in “special category” went to unstructured grid 

geological parameter estimation problem 
� 1 Tflop/s sustained on 2 thousand processors of HP’s “Lemieux 
� each explicit forward PDE solve: 17 million degrees of freedom
� seismic inverse problem: 70 billion degrees of freedom
� employed in NSF seismic research at CMU

reconstruction

target

c/o O. Ghattas, UT Austin
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1999 Gordon Bell “special” prize

Transonic “Lambda” Shock, Mach contours on surfaces

n 1999 Bell Prize in “special category” went to implicit, unstructured grid 
aerodynamics problems
� 0.23 Tflop/s sustained on 3 thousand processors of Intel’s ASCI Red
� 11 million degrees of freedom
� incompressible and compressible Euler flow
� employed in NASA analysis/design missions

to      s
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2002
2003

2003-2004 (2 vol )
2004

2006
2006

2007

Fusion Simulation 
Project

June 2007

2007

Mathematical 
Challenges for the 

Department of 
Energy 

January 2008

2008

Many reports (2002-07) ride 
the “Bell curve” for 

simulation
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Recent “E3” report

2007

z Chapter 1. Climate

z Chapter 2. Combustion, fusion and 
fission energy technologies

z Chapter 3. Biology

z Chapter 4. Socio-economic modeling

z Chapter 5. Astrophysics

z Chapter 6. Mathematics

z Chapter 7. Software

z Chapter 8. Hardware

z Chapter 9. Cyberinfrastructure*

* Support for distributed virtual organizations, workflow 
management, data management, cyber security
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Review: two definitions of scalability
n “Strong scaling”

� execution time decreases in inverse 
proportion to the number of 
processors

� fixed size problem overall
� often instead graphed as reciprocal, 

“speedup”

n “Weak scaling”
� execution time remains constant, as 

problem size and processor number 
are increased in proportion

� fixed size problem per processor
� Various sub-types of weak-scaling 

“memory bound”, etc. (see Kumar et 
al.)

T  

p

good

poor

poor

N ∝ p

log T

log p
good

N constant

Slope
= -1

Slope
= 0
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It’s all about the solver (at the tera-/peta-scale)
n Given, for example: 

� a “physics” phase that 
scales as O(N)

� a “solver” phase that 
scales as O(N3/2)

� computation is almost all 
solver after several 
doublings

n Most applications groups 
have not yet “felt” this 
curve in their gut
� BG/L will change this
� 64K-processor machine 

delivered in 2005

0

0.2

0.4

0.6

0.8

1

1.2

1 4 16 64 256 1024

Solver
Physics

Solver takes 
50% time 
on 64 procs

Solver takes 
97% time on 
64K procs

Weak scaling limit, assuming efficiency of 
100%  in both physics and solver phases

problem size
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SPMD parallelism w/domain decomposition

Partitioning of the grid 
induces block structure on 
the system matrix 
(Jacobian)

Ω1

Ω2

Ω3

A23A21 A22
rows assigned 

to proc “2”

(volume) work to (surface) 
communication is preserved 
under weak scaling
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DD relevant to any local stencil formulation
finite elements finite volumes

• All lead to sparse Jacobian matrices 

J=

node i

row i
• However, the inverses are generally 
dense; even the factors suffer 
unacceptable fill-in in 3D
• Want to solve in subdomains only, and 
use to precondition full sparse problem

finite differences

uniform Cartesian 
adaptive
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An algorithm for PDE simulation: 
Newton-Krylov-Schwarz

Newton
nonlinear solver

asymptotically quadratic

Krylov
accelerator

spectrally adaptive

Schwarz
preconditioner
parallelizable
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Four steps in creating a parallel program

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

n Decomposition of computation in tasks
n Assignment of tasks to processes
n Orchestration of data access, communication, synchronization
n Mapping processes to processors

c/o Culler et al, UC Berkeley
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Krylov-Schwarz parallelization is simple!
n Decomposition into concurrent tasks

� by domain

n Assignment of tasks to processes
� typically one subdomain per process

n Orchestration of communication between processes
� to perform sparse matvec – near neighbor communication
� to perform subdomain solve – nothing
� to build Krylov basis – global inner products
� to construct best fit solution – global sparse solve (redundantly?)

n Mapping of processes to processors
� typically one process per processor
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Inner Krylov-Schwarz kernel in parallel: a 
Bulk Synchronous Process (“BSP”)

local 
scatter

Jac-vec 
multiply

precond 
sweep

daxpy inner     
product

Krylov 
iteration

…

What happens if, for instance, in this 
(schematicized) iteration, arithmetic 
speed is doubled, scalar all-gather is 
quartered, and local scatter is cut by 
one-third?  Each phase is considered 
separately. Answer is to the right.

P1:

P2:

Pn:
M

…
P1:

P2:

Pn:
M
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Krylov-Schwarz compelling in serial, too
n As successive workingsets “drop” into a level of memory, capacity 

(and with effort conflict) misses disappear, leaving only 
compulsory misses, reducing demand on main memory bandwidth

n Cache size is not easily manipulated, but domain size is

Traffic decreases as 
cache gets bigger or 
subdomains get smaller
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Estimating scalability of stencil computations 
n Given complexity estimates of the leading terms of:

� the concurrent computation (per iteration phase)
� the concurrent communication
� the synchronization frequency

n And a bulk synchronous model of the architecture including:
� internode communication (network topology and protocol reflecting 

horizontal memory structure)
� on-node computation (effective performance parameters including vertical 

memory structure)

n One can estimate optimal concurrency and optimal execution time
� on per-iteration basis, or overall (by taking into account any granularity-

dependent convergence rate)
� simply differentiate time estimate in terms of (N,P) with respect to P, equate 

to zero and solve for P in terms of N
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Estimating 3D stencil costs (per iteration)

n grid points in each direction n, 
total work N=O(n3)

n processors in each direction p, 
total procs P=O(p3)

n memory per node requirements 
O(N/P)

n concurrent execution time per iteration
A n3/p3

n grid points on side of each processor 
subdomain n/p

n Concurrent neighbor commun. time 
per iteration B n2/p2

n cost of global reductions in each 
iteration  C p(3/d) or C’ log p 
� C includes synchronization frequency

n same dimensionless units for 
measuring A, B, C 
� e.g., cost of scalar floating point 

multiply-add
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3D stencil computation illustration
Rich local network, tree-based global reductions

n total wall-clock time per iteration

n for optimal p,            , or  

or (with                        ),

n without “speeddown,” p can grow with n
n in the limit as 
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Scalability results for DD stencil computations
n With tree-based (logarithmic) global reductions and 

scalable nearest neighbor hardware:
� optimal number of processors scales linearly with 

problem size

n With 3D torus-based global reductions and scalable 
nearest neighbor hardware:
� optimal number of processors scales as three-fourths

power of problem size (almost “scalable”)

n With common network bus (heavy contention):
� optimal number of processors scales as one-fourth

power of problem size (not “scalable”)
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What’s under the rug?
n This generic weak scaling type of argument has been 

made for ten years
� in Petaflops Workshop series (1997 onward)
� in “all-hands” group meetings of SciDAC users 

(2001 onward)
n Why isn’t everyone “humming” on BG/L already?
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Contraindications of scalability
n Fixed problem size

� Amdahl-type constraints
� “fully resolved” discrete problems (e.g., protein folding, 

network problems)
� “sufficiently resolved” problems from the continuum

n Scalable problem size
� Resolution-limited progress in “long time” integration

� explicit schemes for time-dependent PDEs
� suboptimal iterative relaxations schemes for equilibrium 

PDEs
� Nonuniformity of threads

� adaptive schemes
� multiphase computations (e.g, particle and field)
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Amdahl’s Law (1967)
n Fundamental limit to strong scaling due to small overheads
n Independent of number of processors available
n Analyze by binning code segments by degree of exploitable 

concurrency and dividing by available processors, up to limit
n Illustration for just two bins:

� fraction f1 of work that is purely sequential
� fraction (1-f1) of work that is arbitrarily concurrent

n Wall clock time for p processors
n Speedup 

� for f1=0.01
n Applies to any performance enhancement, not just parallelism

pff /)1( 11 −+∝

]/)1(/[1 11 pff −+=

99.091.050.39.21.0S

100001000100101p
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Resolution-limited progress (weak scaling)
n Illustrate for CFL-limited 

time stepping
n Parallel wall clock time

n Example: explicit wave 
problem in 3D (α=1, d=3)

n Example: explicit diffusion 
problem in 2D (α=2, d=2)

dd PST //1 αα+∝

d-dimensional domain, length scale L
d+1-dimensional space-time, time scale T
h mesh cell size
τ time step size 
τ=O(hα) bound on time step
n=L/h number of mesh cells in each dim
N=nd number of mesh cells overall
M=T/τ number of time steps overall
O(N) total work to perform one time step
O(MN) total work to solve problem
P number of processors
S storage per processor
PS total storage on all processors (=N)
O(MN/P) parallel wall clock time
∝ (T/τ)(PS)/P ∝ T S1+α/d Pα/d

(since τ ∝ hα ∝ 1/nα = 1/Nα/d  = 1/(PS)α/d )

3 months10 days1 dayExe. time

105× 105×105104× 104×104103× 103×103Domain

27 years3 months1 dayExe. time

105× 105104× 104103× 103Domain
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Thread nonuniformity
n Evolving state of the simulation can spoil load balance

� adaptive scheme
� local mesh refinement
� local time adaptivity

� state-dependent work complexity
� complex constitutive or reaction terms
� nonlinear inner loops with variable convergence rates

� multiphase simulation
� bulk synchronous alternation between different phases with 

different work distributions

…
P1:

P2:

Pn:
M

…
P1:

P2:

Pn:
M
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Algorithmic adaptation
n No computer system is well balanced for all computational 

tasks, or even for all phases of a single well-defined task, like 
solving nonlinear systems arising from discretized differential 
equations

n Given the need for high performance in the solution of these 
and related systems, one should be aware of which 
computational phases are limited by which aspect of 
hardware or software.

n With this knowledge, one can design algorithms to “play to”
the strengths of a machine of given architecture, or one can 
intelligently select or evolve architectures for preferred 
algorithms.
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Four potential limiters on scalability 
in large-scale parallel scientific codes

n Insufficient localized concurrency
n Load imbalance at synchronization points
n Interprocessor message latency
n Interprocessor message bandwidth

“horizontal aspects”
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Four potential limiters 
on arithmetic performance

n Memory latency
� Failure to predict which data items are needed

n Memory bandwidth
� Failure to deliver data at consumption rate of processor

n Load/store instruction issue rate
� Failure of processor to issue enough loads/stores per cycle

n Floating point instruction issue rate
� Low percentage of floating point operations among all 

operations

“vertical aspects”
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Candidate stresspoints of PDE kernels
n Vertex-based loops

� memory bandwidth
n Edge-based “stencil op” loops 

� load/store (register-cache) bandwidth
� internode bandwidth

n Sparse, narrow-band recurrences
� memory bandwidth
� internode bandwidth, internode latency, network 

diameter
n Inner products and norms

� memory bandwidth
� internode latency, network diameter
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Summary of observations for CFD case study
(aerodynamics simulation – 1999 Bell Prize)
n Processor scalability is no problem, in principle

� if network is richly connected
n For fixed-size problems, global synchronization and near neighbor 

communication are eventually bottlenecks (strong scaling)
n Coarse grids in hierarchical solvers can become bottlenecks

� coarse grid concurrency may need to be coarser than fine grid 
concurrency (recur: multigrid)

n Memory latency is not a serious problem, in principle
� due to predictability of memory transfers in PDEs

n Memory bandwidth is a major bottleneck
n Processor Load-Store functionality may be a bottleneck
n Infrequency of floating point instructions in unstructured problems 

may be a bottleneck
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Some noteworthy algorithmic adaptations to 
distributed memory architecture

n Restricted Schwarz (Cai & Sarkis)
� omit every other local communication (actually leads to better 

convergence, now proved)
n Extrapolated Schwarz (Garbey & Tromeur-Dervout)

� hide interprocessor latency by extrapolating messages received in time 
integration, with rollback if actual messages have discrepancies in lower 
Fourier modes (higher mode discrepancies decay anyway)

n Nonlinear Schwarz (Cai & Keyes)
� reduce global Krylov-Schwarz synchronizations by applying NKS 

within well-connected subdomains and performing few global outer 
Newton iterations (interchange of loops, move synchronization outside)

n Aggressive coarsening in AMG (Falgout, Yang, et al.)
� reduce size of coarse problems to trade-off cost per iteration with 

number of iterations (and many other such preconditioner quality ideas)
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n Algebraic multigrid a key algorithmic technology
� Discrete operator defined for finest grid by the application, itself, and

for many recursively derived levels with successively fewer degrees of 
freedom, for solver purposes

� Unlike geometric multigrid, AMG not restricted to problems with 
“natural” coarsenings derived from grid alone

n Optimality (cost per cycle) intimately tied to the ability to coarsen 
aggressively

n Convergence scalability (number of cycles) and parallel efficiency 
also sensitive to rate of coarsening

c/o U. M. Yang, LLNL

Algebraic multigrid on BG/L

• While much research and 
development remains, multigrid 
will clearly be practical at BG/L-
scale concurrency

Figure shows weak scaling result for AMG out 
to 131,072 processors, with one 25× 25×25 
block per processor (from 15.6K dofs up to 
2.05B dofs) procs

se
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Some noteworthy algorithmic adaptations to 
hierarchical memory architecture

n ATLAS/Sparsity (Whalley & Dongarra, Demmel & Yelick)
� block (and and selectively fill and reorder for sparse) for 

optimal cache performance of linear kernels

n Block-vector Krylov methods (Baker et al.)
� amortize the unavoidable streaming of large sparse Jacobian 

through cache over several matrix-vector multiplies

n Block relaxation methods (Douglas et al.)
� similar to above, but for triangular backsolves

n Reduced precision preconditioning (Smith et al.)
� double effective bandwidth by truncating precision of already 

approximate operators
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Adaptation to asynchronous programming styles
n Can write code in styles that do not require artifactual 

synchronization
n Critical path of a nonlinear implicit PDE solve is essentially

... lin_solve, bound_step, update, lin_solve, bound_step, update, ...

n However, we often insert into this path things that could be done 
more asynchronously, because we have limited language 
expressiveness
� Jacobian and preconditioner refresh
� Convergence testing
� Algorithmic parameter adaptation
� I/O, compression
� Visualization, data mining

n See Browne, others, on “associative communication”
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Often neglected algorithmic possibilities for 
more scalability

n Parallelization in the time (or generally causal) dimension, 
particularly in nonlinear problems after spatial concurrency 
is exhausted

n Creating independent ensembles for asynchronous evaluation 
(parameter exploration or stochastic model) after space-time 
concurrency is exhausted on the direct problem

n Trading finely resolved discretizations (very sparse) for 
higher-order discretizations (block dense), or other 
algorithmic innovations that alter the granularity of bulk 
synchronous work between data movements
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Reminder about the source of  simulations
n Computational science and engineering is not about individual large-

scale analyses, done fast and “thrown over the wall”
n Both “results” and their sensitivities are desired; often multiple 

operation points to be simulated are known a priori, rather than 
sequentially

n Sensitivities may be fed back into optimization process
n Full PDE analyses may also be inner iterations in a multidisciplinary 

computation
n In such contexts, “petaflop/s” may mean 1,000 analyses running 

somewhat asynchronously with respect to each other, each at 1 
Tflop/s – clearly a less daunting challenge and one that has better 
synchronization properties for exploiting “The Grid” – than 1 analysis 
running at 1 Pflop/s 
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1012 neurons @ 1 KHz = 1 PetaOp/s


