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Abstract

Aquifer-analogue studies established in the petroleum industry have been widely used
for characterizing fractured aquifer systems. Detailed analysis can be performed practi-
cally on an analogue scale and characteristics of fractured systems obtained on this scale
can be upscaled to field scales. A discrete fracture-matrix model is an attractive alter-
native for studying on the analogue scale compared with single- and multi-continuum
models since the effect of individual fractures can be explicitly investigated. The critical
step for the discrete fracture model is the generation of a “representative” fracture net-
work. In general, fracture networks are generated by describing fracture geometries in
terms of statistical distribution and often neglecting the spatial variability. This tool is a
so-called statistical fracture generator. In this study, we develop a geostatistical fracture
generator which integrates statistical geometries and spatial characteristics in terms of
a standardized variogram, neighborhoods and a fracture-cell density. Later the flow and
transport behavior of a fracture-matrix system is investigated. We show that fracture
networks generated by the GFG, to some extent, represent not only the included spatial
characteristics but also a desired fracture-distance distribution (which is not considered in
the GFG itself), and can better capture the flow and transport behavior of the fracture-
matrix system (discharge, peak arrival time, and mean arrival time) than the fracture
networks generated by the SFG. Hence, integrating the spatial characteristics and the
statistical geometries in the GFG have improved the discrete fracture generation and the
flow and transport behavior of the fractured system can be better predicted.

1 Introduction

For many countries worldwide, fractured rock systems have provided important natural re-
sources such as petroleum, gas, water and geothermal energy. Many recent studies investi-
gate the suitability of fractured systems as storage/disposal sites for high-level nuclear waste
([10, 11, 30, 12]). The resource exploitation and potential utilization have led to extensive
studies with the aim of understanding, characterizing and finally predicting the behavior of
fractured rock systems. Aquifer-analogue studies have been widely used for characterizing
fractured systems ([2]). In the analogue studies, the detailed analysis of fractured systems
such as borehole samplings, hydraulic measurements or exposed wall investigations can be
performed practically, and the flow and transport properties obtained on the analogue scale
can be upscaled to the field scale ([18]). On the large reservoir scale, the fractured system is
considered as a single- or double-continuum, however, on the analogue scale, this assumption
is not always valid. Long et al. [25] showed that the validity of considering a fractured system
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as a continuum depended on the geometries of the fractured system, e.g. density and orien-
tation. For the aquifer analogue studies, a discrete fracture model is an attractive alternative
compared with a continuum model because there is no a priori assumption that the fractured
system behaves as a continuum, and the effect of individual fractures can be explicitly inves-
tigated. The increased speed of computers nowadays makes even computationally demanding
simulations, which is the main drawback of the discrete approach, feasible on the analogue
scale. The critical step for the discrete model approach is the generation of a “represen-
tative” fracture network ([28]). In general, fracture network generators can be categorized
as: a) deterministic fracture generators (DFG), and b) statistical fracture generators (SFG).
The geometries of a fracture network (e.g. size, aperture, orientation and location) are deter-
mined exactly for the individual fractures in DFG, whereas they are represented by statistical
distribution functions in SFG ([23, 19, 36, 13]). Due to the intensive data requirements in
DFG, SFG is generally more practical. In the case where dominating fractures are known, a
combination of SFG with DFG is required. However, SFG often fails to capture spatial vari-
ability and connectivity of fracture networks, which is related to interconnected flow paths
that may dominate flow and transport processes in fractured systems ([8]). Spatial variability
of fracture networks has been observed in many studies. La Pointe and Hudson [22] showed
that fracture density and fracture orientation can follow a systematic spatial pattern. For a
large scale problem, the attempt to incorporate spatial variability was presented by Long and
Billaux [24]. They evaluated the experimental variogram of fracture traces from a drift wall
and generated a two-dimensional heterogeneous fracture network which contained statisti-
cally homogeneous sub-domains. This concept was extended to generate a three-dimensional
fracture network of circular-disc fractures by Billaux et al. [9]. However, on the analogue
scale, assuming fracture geometries to be variable in the whole domain and homogeneous in
sub-domains is not applicable because the domain size relative to the fracture size is relatively
small.
The objective of this study is to develop a geostatistical fracture generator (GFG) which
directly handles the statistical geometries as well as the spatial variability. We characterize
spatial variability and connectivity of a fracture network from exposed walls (outcrops, tun-
nels or drifts) and consider these parameters in the geostatistical fracture generator (GFG).
To our knowledge this is the first time that spatial connectivity of fractures is directly included
in fracture generators. In the GFG, first a fracture network is generated by the statistical
fracture generator (SFG) developed by Silberhorn-Hemminger [32] and then its spatial char-
acteristics are included using a global optimization method known as Simulated Annealing
(SA). A successful application of SA in optimizing spatial problems concerning fractured sys-
tems have been reported by several authors ([17, 4, 16, 34]). The flow and transport behavior
of a fractured system are investigated to compare the fracture network generated by the GFG
and the SFG. In this study, the fractured system describes a fracture network embedded in a
surrounding matrix which is permeable to flow, although less permeable than the fractures by
several orders of magnitude. This type of a fractured system is commonly called a fractured
porous media or a fracture-matrix system (FMS).
The paper is organized as follows. In Section 2, we introduce the methodology to quantify
spatial characteristics from exposed walls. In Section 3, the GFG based on the statistical
geometries and the analyzed spatial variability is presented. A comparative study of fractured
systems where fracture networks are generated by the GFG and by the SFG is performed in
Section 4. In Section 5, we summerize the results and discuss future research work.
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Figure 1: Procedure of evaluating an indicator field from a fracture-trace map.

2 Analysis of Spatial Characteristics

We quantify the spatial characteristics of the fracture network from fracture-trace maps
of exposed walls by the modified scanline technique (MS) ([18]). In Figure 1, the scanline
method is illustrated. First, a set of parallel and equally-distributed scanlines are overlayed on
a fracture-trace map, where the direction of scanlines is arranged perpendicular to the main
orientation of the fracture traces. The scanlines are divided into segments of equal length
l. The fracture trace map is hence divided into a grid of cells, see Figure 1b. Then, along
each scanline, the existence of intersection points between fracture traces and the scanline
segment itself are recorded and described with an indicator variable I(xxx):

I(xxx) =

{

1 intersection fracture-scanline exists (called fracture cell)
0 no intersection fracture-scanline exists (called matrix cell) .

(1)

Here xxx is a discrete variable that represents the midpoint of a cell. In this way, the fracture
trace map is transformed into an indicator field. The distance d between scanlines, and
the length l of the scanline segment, are defined depending on the size of the fracture-trace
maps and the characteristics of the fracture traces. Different scanline distances and scanline
segments should be investigated in order to find suitable values ([18]).
The study site in this work is a field block of 8 × 10 × 2 m located at Pliezhausen, Germany
(see Figure 2). The field block is characterized by dense fractures and high porosity and
permeability of the matrix. The fracture trace maps are recorded from a surface of five ex-
posed walls by performing stereophotogrametric shooting ([18]). Figure 3 shows the fracture
traces recorded on the five exposed walls: the north, the east, the south-east, the south-west
and the west walls. Three main fracture clusters, one with almost horizontal orientation
and two with almost vertical orientations, are identified from the 3D field block using stere-
ographic projection, however only two main directions of fracture traces are observed on the
2D exposed walls: one horizontal, and one vertical. Since the scanline direction has to be
perpendicular to the main direction of the fracture trace, two scanline directions are required.
Two indicator fields are evaluated from each exposed wall: one for the horizontal scanline di-
rection considering vertical fracture traces and another one for the vertical scanline direction
considering horizontal fracture traces. According to the analysis of the Pliezhausen exposed
walls presented in Silberhorn-Hemminger [32], the experimental variogram evaluated from
the scanline distance d = 0.10 m (for the horizontal scanline) and d = 0.20 m (for the vertical
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Figure 2: The field block and scanned view of the field block from the south-east (modified
from Dietrich et al. [18]).

scanline) showed similar characteristic for either segment length of 0.04 or 0.10 m. Therefore,
the segment length l = 0.10 m is selected in this study because it economizes computation
time for our further spatial analysis.
The spatial variability is analyzed from indicator fields considering the vertical and the hor-
izontal fracture trace. The first parameter is a standardized experimental variogram, which
measures the average of an increment of values between two points, and at the same time,
considers the variability of the indicator fields in terms of the variance σ2:

γs(hhh) =
1

2σ2

(

1

nh

nh
∑

α=1

[I(xxxα + hhh) − I(xxxα)]2
)

, (2)

where the separation vector |hhh| is measured parallel to the main direction of the fracture trace
(perpendicular to the scanline direction) and nh is the total number of pairs of variables at
a distance |hhh| apart. Since the indicator variables can have two possible outcomes 0 and 1,
its variance is then described according to a Bernoulli trial, which relates to a trial that can
have two possible outcomes. The variance of the indicator field is then given by

σ2 = p(1 − p) , where p =
1

n

n
∑

α=1

I(xxxα) , (3)

where p is the probability of being a fracture cell and n is the total number of cells.
Figure 4 shows that the standardized variograms of the five exposed walls increase within a
specific distance hhh, known as the correlation length or the range, and later reach a constant
value, known as the sill. This means that a spatial dependency of the fracture trace exists
within that range. Only the separation vector hhh parallel to the main direction of the fracture
trace is considered in this paper; for hhh perpendicular to the fracture-trace direction, the
experimental variograms of all exposed walls show only the nugget effect which means no
spatial dependency, see Assteerawatt [3]. The average of the standardized experimental
variograms of the five exposed walls are fitted with variogram models by VARIOWIN ([29]).
The average experimental variograms show best fit with a combination of the exponential
and the nugget variogram model ([14]):

γ(hhh) = C0 + C1 (1 − e

“

−
|hhh|
a

”

) for a > 0 . (4)
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Figure 3: Fracture trace maps of the five exposed walls obtained from a Pliezhausen field
block (modified from Dietrich et al. [18]).

5



a) Vertical fracture trace b) Horizontal fracture trace
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Figure 4: Standardized experimental variograms of the five exposed walls.
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Figure 5: Variogram models from the average of the standardized experimental variograms.
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The parameters C0, C1 and a, are 0.14, 0.86 and 0.80, respectively, for the horizontal-scanline
indicator fields and 0.48, 0.52 and 1.67, respectively, for the vertical-scanline indicator fields.
In this case, the sum of C0 and C1 is 1 because the experimental variograms are normalized
by the variances. The best-fit variograms for the average values of all five standardized
experimental variograms are shown in Figure 5. The standardized variogram only consider the
spatial variability in the direction of the fracture trace, therefore, the additional parameters
called neighborhoods are used to characterize the spatial connectivity of the fracture traces
related to other directions. The fracture neighborhood Nf and the matrix neighborhood Nm

describes the probability of finding a fracture cell or a matrix cell in the eight adjacent cells
of a centered cell I(xxxα):

Nf (k) = 1
nf

∑n
α I(xxxk

α)I(xxxα) ,

Nm(k) = 1
nf

∑n
α I(xxxk

α)(1 − I(xxxα)) .
(5)

Here n is the total number of cells, nf is the total number of fracture cells, xxxk
α is the adjacent

cell located in direction k of xxxα. The directions k, illustrated in Figure 6, are represented by
the digits 0 to 7.
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Figure 6: Illustration of neighborhood directions in connection with the digits 0 to 7.

The neighborhoods Nf and Nm of the five exposed walls from the vertical and the horizontal
fracture trace are presented in Figure 7 and 8, respectively. Due to the values assigned in
Equation (1), a high value of neighborhoods corresponds to a large number of fracture cells.
A high value of Nf is clearly observed in the fracture-trace direction (k = 2, 3) as expected
because neighboring cells of a fracture cell in the fracture direction have a tendency to be
fracture cells. The Nm are significantly lower in the direction of fracture traces meaning that
neighboring cells of a matrix cell in the fracture direction tend to be a matrix cell. The values
of the neighborhoods in the other directions are related to the number of the fracture and the
matrix cells found in those directions. If a center cell is a fracture cell and a neighboring cell
in a non-fracture-trace direction (k 6= 2, 3) is also a fracture cell, this could indicate existence
of a fracture trace in that direction, hence the spatial connectivity of fracture traces is related
to the values of the neighborhoods.
Due to the weathering process acting on the exposed outcrop, the largest number of vertical
fractures is observed on the top. For representing this fracture structure, we set up a param-
eter called fracture-cell density H(z), where the z-coordinate increases towards the top of
the outcrop. It is defined by the number of fracture cells relative to the total number of cells
along each horizontal scanline. The fracture-cell density is only considered for the vertical
fracture traces in the horizontal scanline direction. In Figure 9, the results from the five
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a) Vertical fracture trace b) Horizontal fracture trace
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Figure 7: Fracture neighborhood of the five exposed walls.

a) Vertical fracture trace b) Horizontal fracture trace
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Figure 8: Matrix neighborhood of the five exposed walls.

exposed walls clearly show an increase of the number of fracture cells with increased vertical
position z, which is in agreement with our observation.
The probability p expressed in Equation (3) is included as one of the parameters in the GFG
in order to control the number of fracture cells and matrix cells. It is assumed to be constant
and the average p evaluated from the horizontal- and vertical-scanline indicator fields are
0.2112 and 0.2377, respectively.
The spatial parameters which are analyzed from the outcrop block are considered as spatial
characteristics of the outcrop fracture network. The geostatistical fracture generation (GFG)
is carried out in the next section by integrating the spatial characteristics which are discussed
in this section and the statistical geometries of the fracture network such as the fracture
orientation, the fracture density and the fracture size.
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Figure 9: Fracture-cell density of the five walls for the vertical fracture traces.

3 Geostatistical Fracture Generation

The success of a simulated annealing (SA) as a global optimization method in integrating
multiple characteristics of discrete fractures ([4, 35]), and its flexibility to incorporate addi-
tional information (if needed), make the SA attractive as a methodology for fracture-network
generation. Additionally, the SA can locate good approximations to global optimum of a
given objective function in a large search space ([1]). The application of SA in optimization
problems concerning fractured systems have been reported by several authors ([26, 16, 34]).
The objective function of the SA is defined as the difference between a set of reference
properties from a desired configuration and from a candidate realization. The SA starts
at an initial state, and the system is modified randomly to a new state. The new state is
accepted if the change decreases the objective function or if the change increases the objective
function, it is accepted with the probability

pacc =

{

1 if O(S2) ≤ O(S1)

e

“

−
O(S2)−O(S1)

T

”

, if O(S2) > O(S1) .
(6)

Here the constant parameter T , called annealing temperature, is used for controlling the
acceptance of the new state, and O(S1) and O(S2) are the values of the objective function
of the current state (S1) and the new state (S2), respectively. At each temperature, the
perturbation is repeated for a large number of iterations M before decreasing the temperature.
The temperature T is then reduced linearly to a new temperature Tnew with the cooling factor
α, Tnew = α T . When the temperature T becomes lower, the probability of accepting changes
which cause high objective functions, becomes smaller. This allows the problem to converge.
The SA is used as a methodology in the GFG for integrating the desired spatial characteristics
in the generated domain. The GFG was implemented in the existing 3D-fracture generator
FRAC3D developed by Silberhorn-Hemminger [32]. The FRAC3D originally offers two dif-
ferent approaches: the deterministic fracture generator (DFG) and the statistical fracture
generator (SFG). The DFG requires exact information of a fracture network and the SFG
assumes that a fracture network can be described by theoretical distribution of its geometries
such as orientation, size and density. The SFG starts with generating a random midpoint
of a fracture and determines the location of the fracture from its orientation and size. The
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newly generated fracture is included into the global list of fractures until the desired fracture
density is reached. This approach is based on univariate statistics and does not include any
information about the spatial variability. Optimizing the fracture distance, which is defined
by distances between two directly adjacent fractures measured along a reference line, is an
optional step in the SFG that can be used to include spatial information in the generation of
a fracture network ([32]).
The GFG takes into account the statistical geometries and the spatial variability of the
indicator fields (the standardized experimental variogram, the neighborhoods, the fracture-
cell density and the variance), see Assteerawatt [3]. The GFG starts by generating an initial
state of the fracture network using the SFG. Thus, the generated fracture network obeys
the statistical geometries (size, orientation and density). By defining several investigated
cross-sections in the generated domain, the spatial parameters can be evaluated from the
investigated cross-sections. The objective function O(k) of the randomly generated system
is defined as the sum of normalized differences between the spatial parameters of the target
fracture network (γ̂s(hhh), N̂f (j), N̂m(j), Ĥ(z) and σ̂2) and of the generated fracture network

at state k (γk
s (hhh), Nk

f (j), Nk
m(j), Hk(z) and σk2

) from all Ne investigated cross sections:

O(k) =

Ne
∑

i=1

(w1

nγs
∑

j=1

|γ̂s(hhhj) − γk
s (hhhj)|

γ̂s(hhhj)
+ w2

7
∑

j=0

|N̂f (j) − Nk
f (j)|

N̂f (j)

+ w3

7
∑

j=0

|N̂m(j) − Nk
m(j)|

N̂m(j)
+ w4

nH
∑

j=1

|Ĥ(zj) − Hk(zj)|)

Ĥ(zj)

+ w5
|σ̂2 − σk2

|

σ̂2
) , (7)

where wi is the weighting function and
∑

wi = 1. By introducing the weighting function,
the influence of each spatial parameter on the objective function can be controlled. After
evaluating the objective function of the current state from Equation (7), the fracture net-
work is modified to a new configuration and a new objective function value is calculated.
Comparing the two objective functions, the new network is accepted with the acceptance
criteria mentioned in Equation (6). The fracture network is modified at each iteration step
by adding/removing one fracture, or randomly selecting one fracture and changing its ge-
ometries (location, orientation or shape). All fractures are convex polygons consisting of four
to seven edges. The fracture shape is modified by adding/removing a corner point under
the constraint of a total number of the corner points, or by moving a corner point. The
perturbation is carried out for M iterations and then the temperature T is reduced related to
the cooling factor α. Finally, the SA stops when the objective function remains unimproved
after a couple of temperature steps, or the minimum temperature Tstop is reached. The con-
figuration with a minimum objective function is regarded as the solution to the problem of
finding a realization which has spatial characteristics closest to the target fracture network.
The major difficulty in applying SA is that there is no obvious analogy for defining the initial
temperature T0, the number of iterations M , and the cooling factor α at each temperature
step. In accordance with Bárdossy [5], the value of the initial temperature T0 is selected so
that the initial acceptance probability of a new stage is approximately 0.80 for assuring that
many ”bad” configurations which do not improve the objective function are accepted in the
beginning. The number of iterations M is defined as half of the total number of fractures, to
ensure a high probability of the generated fractures to be involved in the exchange processes.
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Typical values of the cooling factor α for moderately slow cooling rates are 0.90 through 0.99.
In this work, the cooling factor of 0.90 is selected and remains constant for all temperature
steps.

4 Comparison of Geostatistical and Statistical Fracture Gen-

eration

In this section, the fracture networks generated by the GFG and the SFG are compared. The
distribution functions of fracture geometries observed on the Pliezhausen block are summa-
rized in Table 1.

Parameters of Distribution Function

Orientation:

Fisher Distribution f(θ, φ) = κ
4π sinh κ e[κ (sin θ sin α cos(φ−β) + cos θ cos α)] sin θ

Azimuth (A) Dip (D) Spherical Aperture (ω)

A = 360◦ − φ D = θ − 90◦ ω = arcsin

√

21−1/n
κ

Set1 201◦ 85◦ 11.22◦

Set2 146◦ 7◦ 12.05◦

Set3 229◦ 8◦ 10.20◦

Fracture Trace:
Erlang-2 Distribution f(x) = λ2xe−λ x

lambda (λ)
horizontal -5.37
vertical -3.93

Fracture Distance:
Exponential Distribution f(x) = λe−λ x

lambda (λ)
-4.57

Fracture Density:
Uniform Distribution f(x) = 11.34 m2/m3

Table 1: Statistics of the fracture geometries observed from the Pliezhausen field block.

Two study cases of SFG (SFG-A and SFG-B) and two study cases of GFG (GFG-A and GFG-
B) are considered. The two cases of SFG are set up according to two different assumptions
on defining the fracture size. As the fracture size cannot be measured directly from borehole
samples or exposed wall surveys, it has to be approximated from the fracture trace observed
on the exposed walls by assuming a relation between the fracture size and the observed trace
length. In both SFG-A and SFG-B rectangular fractures are assumed. Hence the fracture
size can be described by distributions for two of its side-lengths. In SFG-A, the fractures
are assumed to have the size directly defined by the fracture-trace distribution shown in
Table 1. The length and the width of the horizontal fractures are described by the horizontal
trace distribution, whereas the height and the width of the vertical fractures are given by
the vertical and the horizontal trace distribution. In SFG-B, the fracture-size distribution
is adjusted until the same fracture-trace distribution as for the field block is obtained. The
parameter lambda in the erlang-2 distribution describing the horizontal and vertical length
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distribution in the SFG-B are 4.28 and 1.70 respectively, instead of 5.37 and 3.93 as in the
SFG-A. Reducing the parameter lambda leads to an increase of the fracture size. After the
fracture network of the specified fracture geometries (size, orientation and density) has been
obtained, the fracture distance is optimized according to the distribution observed from the
field block. In the two cases of GFG (GFG-A and GFG-B), an initial configuration of the
fracture network is taken from the SFG, where the fracture-distance optimization option is
not used, (GFG-A from SFG-A and GFG-B from SFG-B) and then the fracture network
is modified by the SA until its spatial parameters similar to those observed from the field
outcrop.
Fracture networks are compared in this section by considering two different aspects; one
is the structure of the generated fracture networks, and another is the flow and transport
behavior of the fracture-matrix systems (FMS). From a stochastic point of view, it is possible
to generate multiple realizations of fracture networks such that each realization represents
the specified descriptions, however, no single realization can exactly match the real system.
The structure of the fracture network and the behavior of the FMS can be quantitatively
predicted from the ensemble average which is obtained only when the number of realizations
is large enough to assure convergent results. We intend to study but not to predict the
characteristics and the behavior of the fractured system, therefore, twenty realizations (five
from each study case) are generated. Even though the number of realization seems to be
very low, the results of the four cases, which are presented later, show significant differences.
For comparing different cases, parameters of each study case are evaluated by averaging over
the five exposed walls of each realization and again over all five realizations. The south-west
cross-section of one realization from each study case is shown in Figure 10.
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Figure 10: Fracture-trace maps of the south-west exposed wall obtained from the four study
cases.
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4.1 Structure of a Fracture Network

The fracture networks generated from the four study cases (the SFG-A, the SFG-B, the
GFG-A and the GFG-B) are compared with the field block by focusing on the fracture
size (fracture trace-length) and the spatial characteristics. The only spatial structure of the
fracture network which is considered in the SFG is the fracture distance. On the other hands,
the GFG takes into account the spatial characteristics such as standardized experimental
variogram, the neighborhoods and the fracture-cell density.

Fracture trace

The average of the cumulated fracture-trace distribution is presented in Figure 11.
The result from the SFG-A shows that approximating the fracture size directly from
the fracture trace results in a too short trace length distribution, which means the
fracture size is underestimated in this case. The SFG-B enlarges the fracture size to
fit the fracture-trace distribution, therefore its results show a good agreement with
the outcrop. The trace length distribution of the GFG-A changes slightly compared
with the SFG-A after optimizing the spatial characteristics. For the GFG-B, the trace-
length distribution is smaller than for the SFG-B, which means that optimizing spatial
characteristics in this case leads to a reduction of the fracture size.

a) Vertical trace distribution b) Horizontal trace distribution
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Figure 11: Comparison of the cumulative distribution functions of trace length averaged from
the five exposed walls of fracture networks generated from the four study cases.

Fracture distance

Figure 12 shows the cumulated distribution of the fracture distance of the four study
cases compared with the field block. The SFG-A and the SFG-B optimize the fracture
distance, therefore, they show better agreement with the field value than the GFG-A
and the GFG-B. A larger size of fractures in the SFG-B and the GFG-B compared with
the SFG-A and the GFG-A means that a less number of fractures are given for the
same fracture density, therefore, the distance between two adjacent fractures tends to
become longer in the SFG-B and the GFG-B than in the SFG-A and the GFG-A. We
do not include the fracture distance as one of the spatial parameter in the geostatistical
fracture generator, however, this parameter could be included (if needed).

Standardized experimental variogram
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Figure 12: Comparison of the cumulative distribution functions of fracture distance averaged
from the five exposed walls of fracture networks generated from the four study cases.

The standardized experimental variogram of the GFG-A and the GFG-B are closer to
the outcrop target value than the SFG-A and the SFG-B for the vertical and horizontal
fracture-trace directions (Figure 13).

a) Vertical fracture trace b) Horizontal fracture trace
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Figure 13: Comparison of the standardized experimental variograms averaged from the five
exposed walls of fracture networks generated from the four study cases.

Neighborhoods

The neighborhoods of a fracture and a matrix cell for the vertical fracture trace of the
GFG-A and the GFG-B are closer to the field block than the SFG-A and the SFG-B
(Figure 14a and 15a). However, the neighborhoods for the horizontal fracture trace
of the GFG-A and the GFG-B closely match only in the fracture direction (k = 2, 3)
but not in the other directions, where the SFG-A and the SFG-B show better results
(Figure 14b and 15b). The reason could be that the neighborhoods for the horizontal
fracture trace are varied in a range broader than for the vertical fracture trace and
tend to be directionally dependent on the south-west walls (see Figure 7b and 8b).
Correct representation of a parameter which has this peculiarity might need a more
complicated approach. The directional dependence of the neighborhoods is observed
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from all realizations generated from the GFG-A and the GFG-B. As shown in Figure
16 and 17, the Nf and the Nm from the field block are close to the values from the
north, the east and the west exposed walls but not to the values from the south-east
and south-west exposed walls.

a) Vertical fracture trace b) Horizontal fracture trace
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Figure 14: Comparison of the fracture neighborhood averaged from the five exposed walls of
fracture networks generated from the four study cases.

a) Vertical fracture trace b) Horizontal fracture trace
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Figure 15: Comparison of the matrix neighborhood averaged from the five exposed walls of
fracture networks generated from the four study cases.

Fracture-cell density

The fracture-cell density H evaluated from all cases is shown in Figure 18. The greater
number of vertical fractures on the top according to the field outcrop, is only observed
from the GFG-A and the GFG-B. The SFG-A and the SFG-B show relatively constant
H due to equally distributed fracture cells.

Even though the geostatistical approach (the GFG-A and the GFG-B) does not consider the
cumulative distribution of the fracture distance, it still reflects the cumulative distance fairly
well. On the other hand, the statistical approach can adequately reproduce the neighbor-
hoods, but not the standardized variogram and the fracture-cell density.
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Figure 16: Neighborhoods of one realization of the GFG-A from vertical-scanline indicator
fields of the five exposed walls, scanline segment length l = 0.10 m and scanline distance
d = 0.20 m.
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Figure 17: Neighborhoods of one realization of the GFG-B from vertical-scanline indicator
fields of the five exposed walls, scanline segment length l = 0.10 m and scanline distance
d = 0.20 m.
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Figure 18: Comparison of the fracture-cell density averaged from the five exposed walls of
fracture networks generated from the four study cases for the vertical fracture trace.
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4.2 Flow and Transport in a Fracture-matrix System

A comparative study of flow and transport behavior is carried out using the numerical model
MUFTE-UG (MUltiphase Flow, Transport and Energy Model - Unstructured Grids) ([15]
and [6]).

4.2.1 Formulation of Flow and Transport Equation

For simplicity, steady-state flow of an incompressible single phase in a nondeformable matrix
is considered, and source/sink terms are neglected. The continuity equation based on mass
conservation can be described as:

∇ · qqq = 0 . (8)

Here the velocity qqq is defined by Darcy’s law as a function of the pressure p and the perme-
ability tensor KKK:

qqq = −
KKK

µ
(∇p − ρggg) , (9)

where µ is the fluid viscosity, ρ is the fluid density, and ggg is the gravitational vector with
absolute value equal to the gravitational constant g. Neglecting the gravitational effect in
Equation (9) results in

qqq = −
KKK

µ
∇p. (10)

For fractures a scalar permeability is assumed given by the parallel-plate concept ([33]):

K =
b2

12
, (11)

where b is the fracture aperture.
The governing equation for solute conservative transport process without source/sink terms
is given as:

∂c

∂t
+ ∇ · (vvvsc −DDD∇c) = 0 . (12)

Here the seepage velocity vvvs is a function of the effective porosity φ and the Darcy velocity:

vvvs =
1

φ
qqq . (13)

The hydrodynamic dispersion DDD in a two-dimensional case where the transport direction
follows the coordinate axis is given as:

DDDij =
vivj

‖vvv‖
(αl − αt) + δij(αt‖vvv‖ + Dm); , (14)

where Dm is the molecular diffusion, αl and αt are the longitudinal and transversal dispersion
lengths, vx and vy are the components of seepage velocity in the longitudinal and transversal
direction, and the Kronecker delta δij is unity for i = j and zero otherwise.
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4.2.2 Simulation of Fracture-Network System

The two-dimensional simulations are performed on the south-west cross-sections for the
twenty realizations, five from each of the four study cases. These results are compared with
a simulation of the scanned south-west wall from the outcrop (Figure 3d). The domain is
discretized with a triangular mesh, with lower-dimensional fractures. Then a vertex-centered
finite- volume method with upwinding formulation is used to solve Equation 12, see Reichen-
berger et al. [31] and for details. Boundary conditions are described in Figure 19 and model
parameters are shown in Table 2. In this study, a highly advective transport is considered,
therefore very low longitudinal and transversal dispersivity are assumed. This advective-
dominated transport allows the direct comparison with the results of a streamline method in
the accompanying paper ([20]).

matrix fracture

Permeability, K [m2] 1.0 · 10−13 8.33 · 10−10

Eff. porosity, φ [-] 0.13 0.30
Long. dispersivity, αl [m] 1.0 · 10−9 0.0
Trans. dispersivity, αt [m] 1.0 · 10−9 0.0
Diffusion coeff., Dm [m2s−1] 1.0 · 10−9 1.0 · 10−9

Aperture, d [m] - 1.0 · 10−4

Table 2: Flow and transport parameters for all simulations

freeflow (tracer)

Dirichlet (pressure)
= 1.0e4 [Pa]

Dirichlet (tracer)
= 1.0 [kg/m^3]
(pulse injection)

Dirichlet (pressure)

No−flow

No−flow

= 1.2e4 [Pa]

Figure 19: Boundary conditions for flow and transport simulations

The flow and transport behavior of the different case studies are compared with respect to
the total outflow Q and the characteristics of the breakthrough curve (BTC) such as a peak
mass flux ṁp, a peak arrival time tp and a mean arrival time t̄. The peak mass flux and
its arrival time are directly observed from BTCs. The travel time t̄ is evaluated from the
moment µi as:

t̄ =
µ1

µ0
where µi =

∞
∫

0

tic(t)dt (15)

Here c(t) is the total mass concentration [kg/s] leaving the domain at time t. The BTCs
obtained from transport simulations are shown in Figure 20 and the total discharge Q and
the BTC characteristics are summarized in Table 3. The deviation of the simulation results
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from the scanned wall is shown in Figure 21, where the standardized value (SV) is defined as

SV =
Pr − Psw

Psw
. (16)

Here, Pr is the average of each investigated parameter over the realizations and Psw is the
parameter from the scanned south-west wall.

a) SFG-A b) SFG-B
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Figure 20: Comparison of breakthrough curves of the south-west walls from different realiza-
tions of the four study cases.

The flow and transport behavior of the field outcrop can be, to some extent, represented by
GFG-A and GFG-B, however, SFG-A and SFG-B show clearly slower processes (see Figure
20 and Table 3). Compared to the simulated field block, Q, t̄ and tp from GFG-A and
GFG-B are closer to the field block than those from SFG-A and SFG-B (see Figure 21). By
considering the spatial structures of the fractured system, the connectivity of fractures can
be represented. Hence the discharge, the peak arrival time and the mean arrival time can
be better approximated. However, connected and preferential flow paths lead to significant
variation of the peak mass flux and of the shape of the BTCs. Therefore, the average
behavior of the fracture-matrix systems requires a simulation performed on large number of
realizations.
The influence of the fracture size observed from the case with and without fracture-trace
fitting remains uncertain. The GFG-B shows closer agreement to the outcrop compared with
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Q ṁp tp t̄
[kg m−3] [kg s−1] [s] [s]

Outcrop 1.72 · 10−5 1.49 · 10−5 5.12 · 104 6.64 · 104

SFG-A 1.03 · 10−5 1.53 · 10−5 1.00 · 105 1.06 · 105

SFG-B 9.36 · 10−6 1.29 · 10−5 1.13 · 105 1.15 · 105

GFG-A 1.73 · 10−5 1.66 · 10−5 5.97 · 104 6.90 · 104

GFG-B 1.56 · 10−5 1.41 · 10−5 6.72 · 104 7.74 · 104

Table 3: Results of flow and transport simulations of the south-west wall obtained form the
field outcrop and average values from four study cases.

a) Total flux Q b) Peak mass flux ṁp
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Figure 21: Average and extreme values (min./max.) of flow and transport simulations of the
south-west wall of the study cases compared with the results obtained from the field outcrop
simulation (dashed line).

the GFG-A for ṁp but not for Q, tp and t̄. Comparing with the results from the outcrop,
the SFG-B seems to be slightly better than the SFG-A for all cases. Investigation on more
realizations could be necessary to draw a conclusion about the effect of the fracture size and
the average behavior of the systems.
In addition, the influence of numerical diffusion can be noticed by comparing the BTCs of
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the scanned south-west wall for different mesh sizes (measured in terms of the average length
of the sides of a grid cell): 0.01, 0.02, 0.05, 0.10 and 0.20 m, corresponding to 93547, 23389,
4277, 1177 and 528 grid vertices, respectively. The numerical diffusion in a FMS leads to
a surprising result of the BTCs. When the grid sizes become smaller, the variances of the
curves become larger and the peak value decreases (see Figure 22). This is due to a physical
diffusion caused by the strong heterogeneity between the fractures and the matrix. As shown
in Figure 23a and 23b for a fine mesh of 0.02 m, when the injected solute reaches the fractures,
it is transported quickly along the fractures and the solute remaining in the matrix requires
longer time to transport out of the FMS. On the contrary, for solute transport on a coarse
mesh of 0.20 m shown in Figure 23c and 23d, the effect of fast-flowing in the fractures and
slow-flowing in the matrix is smeared out over the cross-section perpendicular to the flow
direction due to the numerical diffusion. The FMS tends to behave more homogeneous. To
guarantee the accuracy of the scheme, a small grid size is necessary, hence, the computational
time increases.
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Figure 22: Comparison of breakthrough curves for different mesh sizes: 0.01, 0.02, 0.05, 0.10
and 0.20 m for the south-west exposed wall.

5 Conclusion and Outlook

A geostatistical fracture generator (GFG) which integrates statistical geometries and spatial
characteristics has been presented in this work. By applying a modified scanline technique,
fracture-trace maps of exposed walls are transformed to indicator fields on which the spatial
characteristics are quantified in terms of the standardized variogram, the neighborhoods and
the fracture-cell density. Simulated annealing is selected as our methodology for integrating
the spatial characteristics in the GFG. We have shown here that fracture networks generated
by the GFG not only can reproduce the chosen spatial characteristics, but also, to some ex-
tent, can represent the cumulative distribution of the fracture distance observed from the field
which is not included in the GFG. The fracture networks created by the statistical fracture
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a) Mesh size 0.02 m, t 200 s b) Mesh size 0.02 m, t 32000 s
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Figure 23: Concentration distribution for the south-west wall at time 200 and 32000 s using
mesh sizes 0.02 (fine grid) and 0.20 (coarse grid) m.
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generator (SFG) show good results for the fracture-distance distribution and reasonably good
results for the neighborhoods, however not for the standardized variogram and the fracture-
cell density. Further, strong influence of the spatial characteristics was clearly demonstrated
in flow and transport simulations. The GFG can better capture the system behavior such as
the discharge, the peak arrival time and the mean arrival time than the two study cases from
the SFG. Integrating the spatial characteristics and the statistical geometries in the GFG
have improved the discrete fracture generation and, therefore, the behavior of the fractured
system can be better predicted. Considering only the fracture distance as a spatial struc-
ture and the statistical geometries as in the SFG is not sufficient in this case to generate a
“representative” fracture network. Additional spatial parameters such as the standardized
variogram, the neighborhoods and the fracture-cell density must also be considered.
The flow and transport process in a three-dimensional fracture-matrix system should be
further investigated, since the connectivity of fractures in 3D becomes even more complex
than in 2D. Considering this effect might lead to an effort on extending the geostatistical
fracture generator to take into account additional spatial characteristics.
Due to the strong heterogeneity between fractures and the surrounding matrix and the numer-
ical diffusion, accurate results of flow and transport simulations in a fracture-matrix system
can only be obtained on a fine mesh. This means that an approach that performs fast with
less numerical diffusion is essential. In an accompanying paper ([20]), we present an appli-
cation of streamline tracing on a fracture-matrix system. The advantages of the streamline
method is that it is extremely fast compared with the standard finite volume scheme (which
is used here) and, at the same time, does not suffer from numerical diffusion.
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