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Abstract. Simulations of flow and transport in fractured porous rocks using a discrete
fracture model have gradually become more practical, as a consequence of increased
computer power and improved simulation and characterization techniques. Fractures in
a discrete model are generally described with one dimension less than the surrounding
matrix, the so-called lower-dimensional approach. However, high numerical diffusion in
the transport simulation causes an increased computational demand due to the fine-grid
requirement. A streamline method for transport for a lower dimensional discrete fracture
model (DFML) is proposed in this paper. By solving the mass conservation equation us-
ing a vertex-centered finite volume scheme, a pressure field is obtained. Then, a fracture
expansion and a flux recovery method are carried out to determine new mass conser-
vative fluxes on a hybrid grid of triangles and quadrilaterals, on which streamlines are
traced. Only the advective transport is assumed for the streamline method. The results
of the streamline method are compared with a grid-based finite volume method using
two different fracture-matrix systems: simple systems (a single fracture or systemati-
cally distributed fractures) and complex fracture-matrix systems. Significantly different
transport behavior can be observed in the two types of systems. The numerical diffusion
in the grid-based transport simulation smears out the heterogeneity effect (fast trans-
port in the fractures and slow transport in the matrix) and delays the plume migration.
Whereas, the purely advective transport without numerical diffusion in the streamline
method leads to faster transport.

1. Introduction

Simulations of flow and transport in fractured porous rocks using a discrete fracture
model have gradually become more practical, as a consequence of increased computer
power and improved simulation and characterization techniques. In a discrete fracture
model, fractures may either be discretized with the same dimension as the surround-
ing matrix elements, the so-called equi-dimensional approach, or with one dimension less
than the matrix, the so-called lower-dimensional approach. The comparison study of the
two discretization approaches presented in Neunhäuserer [19] revealed a number of local
differences for the flow and transport, but and only minor differences globally. Suffi-
cient accuracy of global solutions with reduction of the computational time have lead to
wide-spread application of the lower-dimensional approach, see e.g., [23, 17, 14, 16], and
references therein.
In advective dominated problems like transport in fracture-matrix systems, grid-based
methods such as finite difference, finite element and finite volume methods all using the
Eulerian approach, suffer from numerical diffusion. High numerical diffusion in the trans-
port simulation, as shown in the associated paper, gives rise to an increased computational
burden since a very fine grid is required. Streamline methods have become a viable al-
ternative to traditional finite element or finite difference reservoir simulation during the
last decade ([15, 27]). The advantages of streamline simulation are lower computational
demand and less numerical diffusion compared with a grid-based transport model. On
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the reservoir scale where fractures and matrix are treated as two interacting continua,
promising results from streamline tracing have been presented by Huang et al. [12] and
Al-Huthali and Datta-Gupta [1]. Their results showed a close agreement with the results
from a grid-based finite difference simulation with a significant reduction in run time. In
this work, we propose a streamline method for transport for the lower dimensional dis-
crete fracture model (DFML). Similar to the grid-based methods, the streamline method
is based on the velocity field determined from a flow simulation.
The precision of streamline tracing strongly depends on the accuracy of the velocity field
([18]). For finite element based solutions, approximating the velocity from pressure gra-
dients results in discontinuous fluxes at element boundaries and hence lack of mass con-
servation ([8]). Many papers have considered this problem recently, see e.g. [7, 5, 26],
and references therein. Cordes and Kinzelbach [6] proposed an inexpensive technique for
deriving a continuous distribution of fluxes from the finite element solutions. The method
solves a local problem for each grid node to obtain conservative fluxes in a patch surround-
ing the node. This technique was extended by Prévost et al. [22] for the control-volume
finite element scheme on unstructured grids. A flux continuous velocity for a sub cell of a
control volume (triangular or quadrilateral in 2D, and tetrahedron or hexahedron in 3D)
were reconstructed. In this work, a flux recovery for a two-dimensional fracture-matrix
system based on the work of Cordes and Kinzelbach [6] and Prévost et al. [22] is in-
troduced. Continuous and mass conservative fluxes for all sub cells of a control volume
denoted as sub control-volumes are recorded and are later used for streamline tracing.
Additionally, when streamline tracing is considered, lower-dimensional fractures, which
are assumed in the flow simulation have to be extended to equi-dimensional fractures to
obtain well-defined velocities in the fractures.
Due to the post processing and the use of unstructured grids, streamline tracing for gen-
eral quadrilateral grids are required. For a regular quadrilateral mesh (rectangular mesh),
Pollock’s method [20] has been widely used. The extension of Pollock’s method to un-
structured grids has been presented in several studies. Cordes and Kinzelbach [6] extended
Pollock’s method to linear and bilinear finite element methods for groundwater flow, and
later Prévost et al. [22] extended it for streamline tracing with the control volume finite
element method, flux continuous scheme and the multipoint flux approximation (MPFA)
method.
The objective of this paper is to present a streamline method for a lower dimensional
discrete fracture model (DFML). In the next section, the streamline method is presented
stepwise. First, the governing equation and numerical discretization for the flow process
are summarized. Second, the flux recovery together with fracture expansion are described.
Later, the streamline tracing using Pollock’s method on unstructured grids and the evalu-
ation of the breakthrough curve from the time-of-flight are introduced. Finally, the results
obtained from the streamline method and from the grid-based finite volume method are
compared.

2. Streamline Method

2.1. Solution of the flow equation. The continuity equation for an incompressible fluid
in a nondeformable matrix is given as

(1) ∇ · q = 0 ,
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where q is the Darcy velocity. Combining Equation (1) with Darcy’s law and neglecting
the gravitational effect yields

(2) ∇ · q = −∇ · K

µ
∇p = 0 ,

where K is the permeability, µ is the dynamic viscosity and p is the pressure, [4].
A vertex-centered finite volume method, also called box method, is used in this study since
it can be applied to unstructured grids of a fracture-matrix system and is locally mass
conservative ([23]). The spatial discretization of the box method, described in more detail
in Hægland et al. [10], is based on a primary finite element (FE) mesh and a secondary
finite volume (FV) mesh. First, the domain is discretized into a FE mesh, where matrix
properties are assumed to be constant on each element. Next, by connecting element
barycenters with edge midpoints, a FV mesh is constructed, see Figure 1. With each vertex
of the FV mesh there is an associated control volume. Each control volume consists of a set
of sub cells denoted sub control-volumes as illustrated in Figure 1. Fractures are described
by a one-dimensional line in a two-dimensional domain with an associated virtual width
equal to their aperture, the so-called lower-dimensional approach ([23]).

Fracture
subcontrol volume face

Matrix
subcontrol volume face

Fracture

Barycenter

Control volume
(Box)

FE mesh

FV mesh

Node

Element

Subcontrol volume

Figure 1. Finite Element (FE) and Finite Volume (FV) mesh.

The pressure is assumed to vary linearly within each element, and fluxes are evaluated
using Darcy’s law at the exterior boundary of a control volume. denoted as sub control-
volume faces (see Figure 1). After the linear system of equations for the pressure field has
been solved, conservative fluxes over all control volume faces can be determined. Note
that fluxes are in general discontinuous at element boundaries, but they are continuous at
the control volume boundaries.

2.2. Flux recovery. The precision of streamline tracing strongly depends on the accuracy
of the velocity field. Approximating the velocity field using pressure gradients from the
flow simulation results in discontinuous fluxes at element boundaries, not only when the
permeabilities of neighboring elements are different but also when they are the same ([25]).
On the basis of Cordes and Kinzelbach [6] and Prévost et al. [22], a flux recovery for a two-
dimensional fracture-matrix system is introduced in this work to obtain continuous fluxes
on a sub-quadrilateral grid. Additionally, lower-dimensional fractures, which are assumed
in the flow simulation, have to be extended to equi-dimensional fractures to obtain well-
defined velocities in the fractures (not only parallel to the fractures orientation), see [10].
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Fractures are expanded such that the resulting 2D fractures have a width equal to the
associated fracture aperture d and the 1D fracture is the center line, see Figure 2.

(a) Lower-dimensional 1D frac-
ture

d

(b) Equi-dimensional 2D frac-
ture

Figure 2. Expanding a 1D fracture with associated aperture d to a 2D fracture.

Figure 3 shows the five cases that are most likely to occur in a discretized fracture-matrix
system. The control volumes are classified as: (type 1) no fractures, (type 2) a single
crossing fracture, (type 3) two crossing fractures, (type 4) a single ending fracture and
(type 5) an ending fracture and one passing through. The flux recovery for control volumes
is presented here in detail for type 2, and is briefly discussed for the other types afterwards.
The expansion procedure for the general case is discussed in Hægland [10].

Type 5Type 3Type 1 Type 2 Type 4

Figure 3. The different types of control volumes in a discretized fracture-
matrix system. Fractures are indicated with heavy lines.

A simple prototype control volume of type 2 is shown in Figure 4(a). The control volume
Ωcv of the central vertex V5, indicated with the dashed line, is the union of parts of
four triangular elements together with a segment of a single fracture, indicated by the
heavy line. The control volume comprises a total of N quadrilateral sub control-volumes
denoted Qj , where j = 1, . . . , N (in this simple case N = 4). We order Qj counter clock-
wise such that the common edge between Q1 and QN coincides with the fracture. The
1D fracture is expanded to a 2D fracture with aperture d, such that two new rectangular
sub control-volumes Qf

1 and Qf
2 are created inside the control volume, see Figure 4(b).

Each quadrilateral Qj is split into two triangles, one interior T int
j and one exterior T ext

j ,
relative to the central node of the control volume, see Figure 4(b). The lines separating the
triangles T int

j and T ext
j are denoted Eext

j . Only the part of the control volume composed
of the interior triangles T int

j and the fracture sub control-volumes Qf
1 and Qf

2 is considered
in the flux recovery, see Figure 4(c).
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(a) Four elements (triangles) with ver-
tices V1, . . . , V5. A control volume
(dashed line) is associated with V5.
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(b) The control volume in the left fig-
ure. The fracture has been expanded
to a 2D element with aperture d.

Eext
3

Eext
4

Eext
1

Eext
2

Eint
1

Eint,f
2

Eint,f
3 Eint

3

Eint,f
4

Eint,f
1

Ef
2

Ef

Ef
1

(c) Control-volume edge numbering
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Figure 4. Flux recovery for a control volume with an internal fracture.

From the flow simulation, fluxes are given over the exterior faces of the control volume
Ωcv, as indicated by the dashed line segments in Figure 4(b). The recovery procedure
calculates additional conservative fluxes on the interior matrix edges (Eint

j and Eint,f
j )

and the interior fracture edge (Ef ), see Figure 4(c). These fluxes on Eint
j and Eint,f

j are
obtained indirectly by computing a constant Darcy velocity qj of each interior triangle
T int

j .
The constant Darcy velocities qj and the fracture interior fluxes F f must satisfy the
following conditions

• mass conservation for the exterior triangle T ext
j :

(3) qj · nj = Fj,1 + Fj,2 , j = 1, . . . , N ,

where nj is the outward normal vector to Eext
j relative to T ext

j with its length
equal to the length of the edge Eext

j , see Figure 4(d). Fluxes Fj,1 and Fj,2 are the
given fluxes with respect to the outward normal vector of T ext

j at the two edges of
T ext

j which coincides with the ∂Ωcv, see Figure 4(b).
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• the flux over the interior boundaries not coinciding with the fracture edges must
be continuous:

(4) qj · νj,j+1 = qj+1 · νj,j+1 , j = 1, . . . ,M − 1, M + 1, . . . , N − 1 ,

where M is the number of the last interior triangle belonging to Ω1, νj,j+1 is the
normal vector of the interior boundary Eint

j pointing from T int
j to T int

j+1 and has
length equal to Eint

j , see Figure 4(d).
• mass conservation in one fracture Qf

k is required:

(5) −qj · ν
f
k,j + qj+1 · ν

f
k,j + F f + F f

k = 0 ,

where F f is the unknown flux over the fracture interior edge Ef , F f
k is the given

flux over the edge of the expanded fracture Qf
k , which coincides with a part of

the boundary of the expanded control volume. The sign of the fluxes are chosen
according to the outward normal vector of Qf

k . Further, νf
k,j is a normal vector to

the edge Eint,f
j between the fracture k and the interior triangle T int

j and has its

length equal to the edge. The sign of νf
k,j is chosen as shown in Figure 4(d). Note

that we consider only one mass conservation for one of the fracture quadrilaterals;
mass conservation for the other is automatically fulfilled since the sum of the fluxes
out of Ωcv is zero.

A system of 2N − 1 linear equations has now been set up, however, a total number of
unknown components 2N+1 (2N from the qj and 1 from the flux F f ) must be determined.
To close the system, we need two more equations, which can be derived by requiring the
gradient of the pressure field to be irrotational ([6]). From Equation (2), the Darcy velocity
q can be written as

(6) q = −K

µ
∇p .

Rearranging Equation (6) and taking the curl of a gradient yield

(7) ∇× µK−1q = −∇×∇p .

Since the curl of a gradient is always zero and the dynamic viscosity µ is constant in this
study, we have from Stokes theorem

(8)
∫

Ω
∇×K−1qdΩ =

∮
Γ

K−1q · ds = 0 .

Here, Ω may be any 2D subdomain of the whole solution domain, and Γ is the 1D boundary
of Ω. Equation (8) is now applied over two subdomains, Ω1 and Ω2, separated by the
fracture.
For this simple case shown in Figure 4(c), the subdomain Ω1 contains T int

1 and T int
2 with

its boundary Γ1 corresponding to the counter clockwise sequences of edges Eext
1 , Eext

2 ,
Eint,f

2 and Eint,f
1 . Then, Equation (8) can be written as

(9)
∮

Γ1

K−1q · ds =
M∑

j=1

∫
Eext

j

K−1
j qj · ds+

∫
Eint,f

2

K−1
F qf

2 · ds+
∫

Eint,f
1

K−1
F qf

1 · ds = 0 ,

where the orientation of integration is counter clockwise, M is the number of the last
interior triangle belonging to Ω1 (here M = 2), and the fracture permeability KF is a
scalar.
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Figure 5. The four corners points and the direction of fluxes of the frac-
ture rectangles.

In the first term of Equation (9), both Kj and qj are constant; hence,

(10)
M∑

j=1

∫
Eext

j

K−1
j qj · ds =

M∑
j=1

K−1
j qj · tj =

M∑
j=1

K−1
j tj · qj ,

where the tangent vectors tj corresponds to a 90 degrees counter-clockwise rotation of the
normal vector nj having the length of Eext

j .
The second and the third terms in Equation (9) are integrals along the fracture edges.
The velocities in the fracture quadrilaterals qf

1 and qf
2 are given by linear interpolation of

the edge fluxes using Pollock’s method [20]. This yields

(11)
∫

Eint,f
2

K−1
F qf

2 · ds =
(−F f

2 − F f )‖u2‖
2KF ‖v2‖

,

and

(12)
∫

Eint,f
1

K−1
F qf

1 · ds =
(F f

1 − F f )‖u1‖
2KF ‖v1‖

,

where

uk = pk
2 − pk

1 and vk = pk
4 − pk

1 , k = 1, 2 .(13)

As shown in Figure 5, pk
i is the coordinate of the corners i of an extended fracture Qf

k

and F f
i is the flux over the fracture exterior edge Ef

k given from the flow simulation. The
details of the calculation leading to Equations (11) and (12) are presented in the Appendix.

Substituting Equations (10) - (12) in Equation (9) yields

(14)
∮

Γ1

K−1q · ds =
M∑

j=1

K−1
j tj · qj +

(−F f
2 − F f )‖u2‖
2KF ‖v2‖

+
(F f

1 − F f )‖u1‖
2KF ‖v1‖

.

A similar argument can be used to show that the line integral along Γ2 can be given as

(15)
∮

Γ2

K−1q · ds =
N∑

j=M+1

K−1
j tj · qj −

(F f
1 − F f )‖u1‖
2KF ‖v1‖

− (−F f
2 − F f )‖u2‖
2KF ‖v2‖

.

The general case of a discretized fracture-matrix control volume is described by % fractures
meeting at a vertex (% = 0, 1, 2, ...). A new mesh of expanded fractures is constructed by
introducing a polygon M with % edges at the overlapping area of the % expanded fractures.
The % fractures now becomes % trapezoidal elements and the central polygon M is divided
into % triangles, each having one vertex at the centroid of the polygon. A sketch of a case
for % = 5 is shown in Figure 6. The flux recovery method for two fractures described
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previously can now be extended to the case of % fractures. The exterior flux continuity
shown in Equation (3) remains the same. However, the interior continuity equations shown
in Equation (4) is reduced from N−2 to N−% due to the presence of more fractures within
the control volume. Furthermore, there are now % fractures for which Equation (5) has
to be imposed. These increased constraints are counterbalanced by an increased number
of unknown fracture fluxes F f

k in Equation (5). Next, Equations (14) and (15) have to
be extended to % curl relations, instead of two. Finally, after the system of equations are
solved, the solution of the fracture fluxes F f

k are then used to compute the interior fluxes
of the triangles of the central polygon M by following the original method of Cordes and
Kinzelbach [6].

Figure 6. Five fracture meeting. Left: Unexpanded fractures. Right:
Expanded fractures.

For other types of control volumes, a similar concept of the fracture extension and the
flux recovery are applied. The system of equations are solved based on Equations (3), (4),
(5), (14) and (15).
This work do not consider the 3D case, however extension of the flux recovery procedure
to the 3D case without fractures has been considered by Prévost [21]. A difficulty with
the 3D case compared to the 2D case is that in 3D there are more faces connected to a
vertex than there are elements. In 2D, the number of edges and the number of elements
connected to a vertex were the same, which allowed a straight forward derivation of the
linear system. In 3D, additional constraints must be devised to close the system, or the
system can be solved in least-square sense, see [21]. The expansion of the fractures for the
3D case is discussed in Hægland [10].

2.3. Streamline tracing. A streamline s(τ) is defined by requiring that the tangent of
the streamline should be equal to the velocity,

(16)
ds

dτ
=

q(x)
φ

,

where τ is the streamline parameter denoted the time-of-flight (TOF), q is the Darcy
velocity, and φ is the porosity. By rearranging Equation (16) and integrating with respect
to the arc length of a streamline, the TOF that a particle need to travel a given distance
s is given by,

(17) τ(s) =
∫ s

0

φ

‖q‖
ds′,
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where s measures arc length along a streamline. Note that, due to the appearance of
the porosity in Equation (17), the TOF is related to the particle velocity, not the Darcy
velocity.
Methods for streamline tracing on quadrilateral grids when fluxes are known have been
investigated by several authors. For a regular quadrilateral mesh (rectangular mesh)
Pollock’s method has been widely used. The method assumes a piece-wise linear approx-
imation of the velocity over the entire grid. Within a single grid cell taken to be the unit
square for simplicity, the velocity is given as

(18) q(x) =
[

fx0(1− x) + fx1x
fy0(1− y) + fy1y

]
, 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 ,

where fk are fluxes over the cell faces (see Figure 7). Solving Equation (16) by inserting
the velocity from Equation (18) yields two separate expressions for the TOF:

(19) τx(xi, xj) =
φ

fx1 − fx0
ln

(
fx0 + (fx1 − fx0)xj

fx0 + (fx1 − fx0)xi

)
,

and

(20) τy(yi, yj) =
φ

fy1 − fy0
ln

(
fy0 + (fy1 − fy0)yj

fy0 + (fy1 − fy0)yi

)
.

The TOF that a particle travels from the entry point xen to the exit point xex of the
grid cell is determined by calculating the time that a streamline requires to cross the grid
boundaries. Inserting xj = 0 and 1 in Equation (19) and yj = 0 and 1 in Equation (20),
and replacing xi and yi with xen yield four different times that the streamline requires to
cross the left, the right, the bottom and the top boundaries respectively. The TOF is the
minimum positive time of the calculated times. By rearranging Equations (19) and (20)
and inserting the TOF in τex, the exit point xex is then given as

(21) xex =
1

fx1 − fx0

{
qen,x exp

(
τex

φ
(fx1 − fx0)

)
− fx0

}
,

(22) yex =
1

fy1 − fy0

{
qen,y exp

(
τex

φ
(fy1 − fy0)

)
− fy0

}
,

where qen is the velocity at the entry point xen calculated from Equation (18).

fx0 fx1

xex

fy0

xen
fy1

y

x0

1

1

v(x)

Figure 7. Pollock tracing for a unit square.
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A complex fracture-matrix system can only be discretized precisely with unstructured
grids. Hence, streamline tracing which performs well on unstructured grids is required.
The extension of Pollock’s method on unstructured grids has proven successful in several
studies [6, 22, 11]. The spatial coordinates together with the velocity in the physical space
P are transformed to a reference space R by using the bilinear iso-parametric transforma-
tion, see Figure 8.

1

2

4

3

y1f

x1f

y0f

x0f

y

x

v

(a) Physical space P
y0f’

y1f’

x0f’ x1f’

1 2

34

0 1 x’

y’

1

v’

(b) Reference space R

Figure 8. Transformation of an unstructured grid and edge fluxes from a
physical space P to a reference space R.

According to Hægland et al. [11], the velocity field v′ in R is related to the linear flux
interpolation as

(23) q′ =
dx′

dt
=

1
det J

[
fx0(1− x′i) + fx1x

′
i

fy0(1− y′i) + fy1y
′
i

]
,

where JJJ is the Jacobian transformation matrix

(24) JJJ =


dx

dx′
dx

dy′

dy

dx′
dy

dy′

 .

The velocity in Equation (23) is rewritten in terms of a pseudo time τ in R as shown by
Jimenez et al. [13] as

(25) dτ =
dt

det J
=


dx′

fx0(1− x′i) + fx1x′i
dy′

fy0(1− y′i) + fy1y′i

 ,

where t is real time in P. The actual time-of-flight tex is then evaluated by integrating
Equation (25) from x′en to x′ex:

(26) tex =
∫ t(τex)

0
dt =

∫ τex

0
det J(x′(τ), y′(τ))dτ .

Recently, some problems with the method have been reported and resolved. Inaccuracies
in computing TOF due to errors in the absolute value of the interpolated velocity field
have been reported in [13, 9, 11]. Jimenez et al. [13] proposed an extension of the method
that allowed for exact reproduction of time-of-flight for uniform flow in 2D. In this paper,
we utilize this latter approach, see [9, 11, 13] for more details of the method.
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2.4. Evaluation of the breakthrough curve. We assume purely advective transport
of a solute tracer in the streamline method and visualize each streamline as a flow channel
or a streamtube. Due to the pure advective transport in the streamline method, no mass
exchanges between neighboring streamtubes. The TOF measures the time that the tracer
needs to travel along the streamtube, see Figure 9. Streamlines are distributed equally
according to the total flux along the inflow boundary, such that each streamtube contains
the same flux.
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������
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Figure 9. Mass transport in a streamtube as a block.

The transport behavior characterized from the results of the streamline method are de-
scribed using a breakthrough curve (BTC) and an accumulated breakthrough curve (Ac-
cBTC). The latter is the sum of the total mass leaving the domain at the outflow boundary
until a time t and BTC is the rate of change of AccBTC during the time interval ∆t

BTC(t) =
AccBTC(t)−AccBTC(t−∆t)

∆t
,(27)

AccBTC(t) = AccBTC(t−∆t) + ṁs
n∑

i=1

Ti ,(28)

where ṁs is the normalized mass flux, which is determined by the mass flux in each
streamtube over the total injected mass, and n is the total number of the streamtubes.
The arrival time condition Ti, for a streamtube i, is given as

(29) Ti(t) =

 0 ; t < TOFi

t− TOFi ; TOFi ≤ t ≤ TOFi + dt
0 ; t > TOFi + dt

where the time of flight TOFi is the time that a block mass in a streamtube i travels until
it reaches the outflow boundary and dt is the duration of mass injection.
The TOF of each streamtube is a discrete value, which can be the same for all streamtubes
or highly varied depending on the geometries and structures of a domain. The overall
transport behavior of the system is presented as a histogram BTC which evaluates the
rate of change of the normalized mass flux over a specified interval of time.

3. Comparison Results

3.1. Preliminary test case. In order to understand the difference arising from simulat-
ing the transport process using grid-based advective transport (ADT) and the streamline
method (STR), three preliminary test cases are set up: a single short fracture, a single
long fracture and systematically distributed fractures, see Figure 10 (top). For all test
cases, a two-dimensional domain of 1.0 × 1.0 m is set up. The fluid properties and the
domain properties correspond to the data presented in Table 1.
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We consider transport of a solute tracer without dispersion and the governing equation
can be written as

(30)
∂c

∂t
+∇ · q

φ
c = 0 .

where c is the concentration of the tracer. For the ADT, Equation (30) is discretized using
a box method with upwinding formulation ([19]). For the STR, the transport of solute
tracer is obtained directly from the streamline time-of-flight and Equation (28).
The boundary conditions are no-flow on the top and the bottom. For the flow simulation, a
Dirichlet boundary in terms of pressure is given on the left-hand side (the inflow boundary)
and on the right-hand side (the outflow boundary). For the grid-based transport simulation
(ADT), tracer is given for a very short time at the inflow boundary. A free-flow boundary
is given at the outflow for the transport simulation, which means that a tracer arriving
at the boundary is allowed to leave freely. A total of 500 streamlines are traced and
distributed equally according to the fluxes at the inflow. We used 500 streamlines because
the AccBTC from 500 streamlines showed visual convergence to the AccBTC from 10000
streamlines.
The ADT and the STR are carried out on different mesh sizes (measured in terms of
the average length of the sides of a grid cell) of approximately 0.01, 0.02 and 0.03 m to
investigate the influence of numerical diffusion.

Domain Properties
matrix fracture

Permeability, K [m2] 1.0 · 10−13 8.33 · 10−10

Eff. porosity, φ [-] 0.13 0.30
Aperture, b [m] - 1.0 · 10−4

Fluid Properties
Viscosity, µ [kg/(m · s)] 1.814 · 10−5

Density, ρ [kg/m3] 1.21
Table 1. Domain and fluid properties for all simulations.

Some streamlines of the fine mesh (0.01 m) are shown in Figure 10 (bottom). In all cases we
observed that high permeability in fractures resulted in flow paths towards the fractures.
These flow paths yield a faster tracer transport within their streamtubes, whereas the
other flow paths in the surrounding matrix lead to a slower tracer transport.
The results of the accumulated breakthrough curves (AccBTCs) and the breakthrough
curves (BTCs) are presented in Figure 11. In all test cases, the AccBTCs and the BTCs
of the ADT differ considerably between different mesh sizes due to numerical diffusion.
Whereas, the AccBTCs from the STR are rather similar for all mesh sizes and their slight
local differences come from the fact that the velocity field obtained from the flow simulation
is locally grid dependent, especially near the fractures.
In the short fracture case, the BTCs of the ADT in Figures 11a1 show that using a coarser
mesh size results in a higher variance and a lower peak value. This indicates that the
numerical diffusion increases the spreading of the tracer plume in the matrix and smears
out the concentration front, especially the double-continuum effect due to fast transport
in the fracture and slow transport in the matrix has disappeared. On the contrary, for the
STR having no numerical diffusion, the double-continuum effect results in the two jumps
of the AccBTCs (Figure 11a2) and the two peaks of the BTCs (Figure 11a3). The large
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Figure 10. Top: Domains with fractures. Middle: Discretization domains
(top) for a mesh size of 0.01 m corresponding to ca. 11700 vertices. Bottom:
25 of the 500 streamlines traced for the grids in the middle row.

part of the tracer transported in the matrix arrives about the same time at the outflow
and results in a very high mass flux in the second peak of the BTC and a sharp rise of the
second jump in the AccBTC.
When the fracture becomes longer (Figure 11b), the double-continuum effect can also be
noticed for the ADT, in spite of the numerical diffusion, see Figures 11b1 and 11b2. The
fast transport in the long fracture results in the first peak of the BTCs; later, the part
of the tracer plume transported in the matrix leads to the second peak. The numerical
diffusion in the transversal flow-direction causes spreading of mass transported in the
fracture to the surrounding matrix. Therefore, the value of the first peak of the BTC
of the STR is higher than that of the ADT (see Figure 11b3) and the AccBTCs show a
sharp rise for the STR, but only a gradual increase for the ADT (see Figures 11b2). This
effect delays the arrival time of the mass transported in the fracture. The influence of the
numerical diffusion on the part of the tracer transported through the porous matrix shows
the same behavior as that observed in the BTCs for the single short fracture, as discussed
above.
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(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

Figure 11. Transport simulation results of ADT and STR for the test
cases: a) (left column) a single short fracture, b) (middle column) a single
long fracture and c) (right column) systematically distributed fractures.
Top row (a1/b1/c1): BTC of ADT for different mesh sizes. Middle row
(a2/b2/c2): AccBTC of ADT and STR for different mesh sizes. Bottom
row (a3/b3/c3): BTC of ADT and STR at a mesh size of 0.01 m.

Increasing the number of horizontal fractures with a vertical fracture connecting all hori-
zontal fractures (Figure 11c) increases the part of tracer transported in the fractures and
decreases the part transported in the matrix. Therefore, the BTCs in Figure 11c1 show a
high peak and the AccBTCs in Figure 11c2 show a high first jump. Due to the influence of
the numerical diffusion in the ADT, the BTCs of the coarse mesh size of 0.03 and 0.02 m
show only a long tail, whereas the BTC of the fine mesh size of 0.01 m has a small second
peak (see Figure 11c1), more similar to the BTC of the STR showing a double-continuum
effect as can be seen in Figure 11c3. The effect of the numerical diffusion along fractures
in the transversal flow-direction can be better noticed in this case than in the single long
fracture case. As the mesh gets finer and the numerical diffusion decreases, the tracer
transported in the fractures remains more confined to the fractures and arrives faster at
the outflow and this yields a BTC with a slightly higher peak concentration shifted some-
what to the left compared to the BTCs of the coarser mesh sizes (see Figure 11c1). The
AccBTCs of the ADT seem to converge to the result of the STR when the mesh becomes
finer and the numerical diffusion decreases, see Figure 11c2.
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3.2. A complex fracture-matrix system. After a basic understanding of the transport
behavior for ADT and STR has been gained from the preliminary test cases, the next step
is to perform a comparison study between the two approaches in a complex fracture-matrix
system. The fracture networks are generated by the fracture generator FRAC3D based on
statistical geometries and geostatistical parameters taken from a study site in Pliezhausen,
Germany, see [2, 3]. Boundary conditions, fluid properties, and domain properties are the
same as for the test cases in the previous section.
We consider five different cases (GFG-A, GFG-B, GFG-C, SFG-A and SFG-B) where their
fracture networks are generated from five different geometries and spatial characteristics
using a statistical or geostatistical approach as described in the associated paper ([3]).
Several realizations of a fracture network with the same fracture geometries and spatial
characteristics can be obtained when a fracture network is generated based on a stochas-
tical approach. In this study, for each of the five cases we consider five fracture-network
realizations. We first consider the five realizations from the GFG-A, and subsequently
consider the average behavior of the five realizations from each of the cases.
We start by generating five realizations R1-R5 from the GFG-A. The streamline distribu-
tion taken from realization R1 is shown in Figure 12. In a complex fracture-matrix system,
the increased number of fractures and varying orientations lead to a high dispersion of the
tracer plume. As shown in Figure 12, no streamlines are transported only in the sur-
rounding matrix, but rather they are partly transported in the fractures and partly in the
matrix. Hence, the AccBTCs of the five realizations do not show a clear double-continuum
behavior, see Figure 13. For all realizations, the AccBTCs of the STR shift to the left
compared with the ADT which means that in the STR simulation mass transports faster
than in the ADT simulation. This corresponds with the results presented in the case of
systematically distributed fractures. The numerical diffusion in the ADT leads to a delay
of mass transport in the fractures.

Figure 12. Streamlines traced for one realization (R1) of a complex
fracture-matrix system of the GFG-A.

The transport behavior is characterized by the effective travel time, the variance and the
skewness and they are evaluated from the moment and the central moment of the BTC
([3]). The variance and the skewness of the BTC depend highly on the distribution of
the tracer concentration. A high variance means a high degree of spreading of the plume.
The skewness represents the asymmetry of the spreading. A positive skewness indicates
that a larger part of tracer plume first transports to the outflow, and then the rest of the
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Figure 13. AccBTCs of ADT and STR for the complex fracture-matrix
systems for five realizations (R1-R5) of the GFG-A.

plume arrives gradually. The faster mass transport in the STR leads to a less effective
travel time compared with the transport in the ADT (see Figure 14a). For all realizations,
higher variances and higher skewnesses are seen in the STR compared to the ADT (see
Figures 14b and 14c). This is due to the fact that the fast transport in the fractures and
the slow transport in the matrix are better captured with the STR, whereas the numerical
diffusion in the ADT smears out this contrast.
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Figure 14. Quantitative results of ADT and STR for the complex
fracture-matrix systems of five realizations from the GFG-A.

In the last part of this section we consider the average behavior for the five cases GFG-
A, GFG-B, GFG-C, SFG-A and SFG-B. The details about the fracture generation are
presented in the associated paper ([3]). For each case, five realizations are generated and
the results presented for each case are the average values over all five realizations.
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The average AccBTCs from the STR and the ADT for the five cases are shown in Figure
15. For all five study cases, the average AccBTCs from the STR shifts to the left compared
with the ADT which means that the STR leads to a faster mass transport compared to the
ADT. This agrees with the average values of the effective travel times of the STR being
less than those of the ADT, as shown in Figure 16a. In all cases, a physical dispersion
due to fast and slow transport can be identified from the positive skewness in Figure 16c.
Due to the purely advective transport and no numerical diffusion in the STR, the variance
and the skewness for the STR are larger than for the ADT, indicating a larger physical
dispersion. On the other hand, the numerical diffusion in the ADT delays plume migration
in the fracture-matrix system. As a result, the difference between AccBTCs and BTCs
of the two approaches is clearly noticed for all study cases of the fracture-matrix system.
Most of the values obtained from the STR show larger extreme values than from the ADT,
particularly for the variance of the SFG-B. Hence, more realizations might be required to
represent the transport behavior using STR.
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Figure 15. Average AccBTCs of ADT and STR for the complex fracture-
matrix systems for the five different cases GFG-A, GFG-B, GFG-C, SFG-A
and SFG-B.

4. Conclusion

The precision of streamline tracing strongly depends on the accuracy of the velocity field.
Approximating the fluxes from pressure gradients obtained from the flow simulation results
in discontinuous fluxes at element boundaries. A flux recovery for a two-dimensional
fracture-matrix system is proposed for calculating mass conservative fluxes over boundaries
of quadrilateral sub control-volumes. Lower-dimensional fractures, which are assumed in
the flow simulation, have to be extended to equi-dimensional fractures to obtain well
defined velocities and streamlines in the fractures (not only parallel to the orientation of
the fractures).
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Figure 16. Average and extreme values (min./max.) obtained from the
ADT and the STR for the complex fracture-matrix systems for the five
different cases.

The applicability of a streamline method (STR) for the study of the transport behavior in
a fracture-matrix system is investigated by comparing with the results from a grid-based
advective transport (ADT) model. In the simple cases of one fracture or systematically
distributed fractures, the effect of fast flow in the fractures and slow flow in the matrix
is smeared out due to the numerical diffusion in the ADT. The preferential flow paths in
the fracture-matrix system are clearly noticed in the STR from the double-peak BTCs
and two sudden rises in the AccBTCs. In the complex fracture-matrix system consisting
of a large number of fractures with varying orientations, numerical diffusion in the ADT
delays plume migration, whereas purely advective transport in the STR leads to fast
solute transport and maintains a high physical dispersion due to the fast transport in the
fractures and slow transport in the matrix. As a result, we observe a less effective travel
time, higher variance and higher skewness from the STR than from the ADT as well as a
shift of AccBTC of the STR to the left.
Further investigations involving comparisons with experimental or field studies have to be
carried out in order to validate the results of the STR. If the assumption of the purely
advective transport in the STR leads to an acceleration of the tracer transport in the
system compared with the measurement results, including dispersive transport in the
STR could be considered to improve the STR approach.

5. Appendix

The integral of the velocity along the fracture edge is computed by assuming that the
velocities in the quadrilateral fracture are given by linear interpolation of the edge fluxes
similar to Pollock’s method ([20]). Following Prévost et al. [22] and Jimenez et al. [13],
the rectangle Qf

1 (see Figure 4(b)) in P is transformed to a unit square in a reference
space R using the bilinear transformation x(x̂, ŷ), which simplifies for a rectangle (Figure
17 (right)) to,

(31) p(x̂, ŷ) = p1 + (p2 − p1)x̂ + (p4 − p1)ŷ ,

with the constant Jacobian matrix,

(32) J =
[
x2 − x1 x4 − x1

y2 − y1 y4 − y1

]
=

[
u v

]
,

where u and v are the shape vectors of the rectangle, and xi is the point at corner i

see Figure 17 (left). Edge fluxes Fx0, Fx1, Fy0, and Fy1, are defined for Qf
1 with positive



STREAMLINE APPROACH FOR A DISCRETE FRACTURE-MATRIX SYSTEM 19

v

u

p1

p2

p3

p4
Fx0

Fx1

Fy0

Fy1

Figure 17. The extended fracture rectangle. Left: Shape vectors. Right:
Corners and direction of fluxes.

direction as shown in Figure 5 (right). Then, the interpolated velocity qf in Qf
1 is defined

in R by ([22])

(33) q̂f =
1

det J

[
Fx0(1− x̂) + Fx1x̂
Fy0(1− x̂) + Fy1x̂

]
,

where the determinant of the Jacobian, detJ , is simply equal to the area A of the rectangle.
The fluxes Fy0 and Fy1 over the edges for the expanded fracture segment Qf

1 are given by
the dot product of the constant velocity in the neighboring interior triangle of the fracture
and the normal vector of the edge. The sign of the fluxes are indicated in Figure 17 (right).
The flux Fx1 and Fx0 are given by the unknown interior fracture flux F f and the flux at
fracture flux point respectively. For the expanded fracture segment Qf

1 in Section 2.2,
Fx0 = −F f , Fx1 = F1, Fy0 = −qN · νf

1,1, and Fy1 = −q1 · ν
f
1,1. The relation between the

velocity in P and R is ([11])

qf = Jq̂f =
1

A1
[(Fx0(1− x̂) + Fx1x̂)u + (Fy0(1− ŷ) + Fy1ŷ)v] .

The last term in Equation (8) can now be evaluated. We parameterize the path along the
fracture edge from p4 to p3 (Figure 17 (right)) as

(34) α(x̂) = p(x̂, 1), 0 ≤ x̂ ≤ 1 .

Then α′(x̂) = u1, and using that u1 · v1 = 0, u1 · u1 = ‖u1‖2, and A1 = ‖u1‖‖v1‖, we
have∫

Eint,f
1

K−1
F qf

1 · ds =
∫ 1

0
K−1

F qf
1(α(x̂)) ·α′(x̂)dx̂

=
1

A1

∫ 1

0
(Fx0(1− x̂) + Fx1x̂)K−1

F u1 · u1dx̂ +
Fy1

A1

∫ 1

0
K−1

F v1 · u1dx̂

=
(Fx0 + Fx1)‖u1‖

2KF ‖v1‖
.(35)
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