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Abstract. Multiscale simulation is a promising approach to facilitate direct simulation of large
and complex grid-models for highly heterogeneous petroleum reservoirs. Unlike traditional sim-
ulation approaches based on upscaling/downscaling, multiscale methods seek to solve the full
flow problem by incorporating sub-scale heterogeneities into local discrete approximation spaces.
We consider a multiscale formulation based on a hierarchical grid approach, where basis func-
tions with subgrid resolution are computed numerically to correctly and accurately account for
subscale variations from an underlying (fine-scale) geomodel when solving the global flow equa-
tions on a coarse grid. By using multiscale basis functions to discretise the global flow equations
on a (moderately-sized) coarse grid, one can retain the efficiency of an upscaling method, while
at the same time produce detailed and conservative velocity fields on the underlying fine grid.

For pressure equations, the multiscale mixed finite-element method (MsMFEM) has shown
to be a particularly versatile approach. In this paper we extend the method to corner-point
grids, which is the industry standard for modelling complex reservoir geology. To implement
MsMFEM, one needs a discretisation method for solving local flow problems on the underlying
fine grids. To this end, we propose two different subsolvers that both are designed to give
accurate and robust discretisations with minimal grid-orientation effects on grids with strong
anisotropies and irregular geometries. Our first subsolver subdivides the hexahedral corner-
point cells into a set of tetrahedra, on which a standard mixed finite-element method is used.
Our second subsolver is based on mimetic discretisation principles and works directly on the
hexahedral cells. A mimetic discretisation is a generalisation of mixed finite elements that gives
a discrete inner product and allows for curved grid faces and polyhedral elements.

The versatility and accuracy of the multiscale mixed methodology is demonstrated on
two corner-point models: a small Y-shaped sector model and a complex model of a layered
sedimentary bed. In particular, we demonstrate how one can avoid the usual difficulties of
resampling, when moving from a fine to a coarse grid, and vice versa, since the multiscale mixed
formulation allows the cells in the coarse grid to be chosen as an (almost) arbitrary connected
collection of cells in the underlying fine grid.

1. Introduction

Rock formations found in natural petroleum reservoirs are typically heterogeneous at all length
scales, from the micrometre scale of pore channels between sand grains to the kilometre scale of the
full reservoir. However, when modelling fluid flow in porous formations, it is generally not possible
to account for all pertinent scales that impact the flow. Instead one has to create models for
studying phenomena occurring at a reduced span of scales. In reservoir engineering, the reservoir
is modelled in terms of a three-dimensional grid, in which the layered structure of sedimentary
beds (a small unit of rock distinguishable from adjacent rock units) in the reservoir is reflected in
the geometry of the grid cells. The physical properties of the rock (porosity and permeability) are
represented as constant values inside each grid cell.

Modern methods for 3D geological modelling and reservoir characterisation is leading industry
to routinely build very large and detailed reservoir models; grid models of the subsurface geology
currently range in size from 10 to 100 million cells and are growing. Moreover, the industry is
moving away from a single “best effort” modelling and towards computations of many plausi-
ble realisations to assess uncertainty in geomodels. Due to the highly heterogeneous nature of

1



2 J.E. AARNES, S. KROGSTAD, K.-A. LIE, AND V. LAPTEV

porous rock formations, geomodels tend to have strongly irregular geometries and very complex
hydraulic connectivities. Unfortunately, reservoir simulation technology has not kept pace with
the development within geological modelling, and there is a steadily increasing gap between the
level of detail seen in industrial geomodels and the capabilities of current flow simulators. In
part, industry-standard simulators are incapable of simulating models with multi-million cells,
and, in part, the underlying discretisation methods were not designed to handle the challenges
posed by current geomodels: high aspect ratios, anisotropic properties, curved faces, degenerate
cells, non-conformal grids, etc.

The traditional approach to overcome the gap in resolution between geomodels and simula-
tion models is to use upscaling/downscaling between a detailed geological model and a coarser
simulation model. In this paper we will discuss an alternative approach based on a multiscale
formulation for computing pressure and flow velocities, where the full flow problem is solved by
incorporating sub-scale heterogeneities into local discrete approximation spaces. This means that
the global flow is computed on a coarse grid and fine-scale heterogeneity is accounted for through a
set of generalised, heterogeneous basis functions. The basis functions are computed numerically by
solving local flow problems (as is done in many flow-based upscaling methods), and when included
in the coarse-grid equations, the basis functions ensure that the global equations are consistent
with the local properties of the underlying differential operators. By using the multiscale basis
functions to discretise the flow equations on a (moderately-sized) coarse grid, one can retain the
efficiency of an upscaling method and at the same time produce detailed and conservative velocity
fields.

The multiscale mixed finite-element formulation [11, 1, 3] has previously shown to be a
particularly versatile approach for flow simulation on Cartesian grids in the sense that it produces
more accurate and robust results than what is obtained by traditional upscaling approaches; see
[2]. Here we take the important step of extending the methodology to the more complex corner-
point grid format used in the oil industry. In particular, we seek to demonstrate that by using a
multiscale formulation one avoids the usual difficulties of resampling grid properties when moving
from a fine to a coarse grid, and vice versa. In the multiscale formulation, the cells in the coarse
grid can, at least in principle, be chosen as an almost arbitrary connected collection of cells in the
underling fine grid.

The outline of the paper is as follows. We start by discussing the complexity of geological
grid models and some of the challenges they pose for flow simulation in Section 2. In Section 3,
we present our basic flow model and its mixed formulation and before we introduce the multiscale
method in Section 4. In Section 5, we present two alternative subgrid discretisation techniques
that will be used to construct basis functions for the multiscale method. Finally, we present and
discuss two numerical examples in Section 6 to highlight some of the properties of the multiscale
method. In particular, we compare the multiscale velocity fields obtained on different coarse grids
using the two alternative discretisation techniques as subgrid solvers and solve a two-phase flow
equation on the underlying fine grid to see how strongly discrepancies in the velocity fields impact
flow characteristics.

2. Complexity of Reservoir Simulation Models

Natural petroleum reservoirs typically consist of a subsurface body of sedimentary rock having
sufficient porosity and permeability to store and transmit fluids. Sedimentary rocks are formed
through deposition of sediments and typically have a layered structure with different mixtures of
rock types. In its simplest form, a sedimentary rock consists of a stack of sedimentary beds that
extend in the lateral direction. Due to differences in deposition and compaction, the thickness
and inclination of each bed will vary in the lateral directions. In fact, during the deposition, parts
of the beds may have been weathered down or completely eroded away. In addition, the layered
structure of the beds may have been disrupted due to geological activity, introducing fractures and
faults. Fractures are cracks or breakage in the rock, across which there has been no movement.
Faults are fractures across which the layers in the rock have been displaced.
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Figure 1. Side view in the xz-plane of corner-point grid with vertical pillars
modelling a stack of sedimentary beds (each layer indicated by a different colour).

To model such geological structures, a standard approach is to introduce what is called a
corner-point grid [15]. A corner-point grid consists of a set of hexahedral cells that are aligned in
a logical Cartesian fashion. One horizontal layer in the grid is then assigned to each sedimentary
bed to be modelled. In its simplest form, a corner-point grid is specified in terms of a set of vertical
or inclined pillars defined over an areal Cartesian 2D mesh in the lateral direction. Each cell in
the volumetric corner-point grid is restricted by four pillars and is defined by specifying the eight
corner points of the cell, two on each pillar. Figure 1 shows a side-view of such a corner-point
grid. Notice the occurrence of degenerate cells with less than eight non-identical corners where
the beds are partially eroded away. Some cells also disappear completely and hence introduce new
connections between cells that are not neighbours in the underlying logical Cartesian grid.

The corner-point format easily allows for degeneracies in the cells and discontinuities (frac-
tures/faults) across faces. Hence, using the corner-point format it is possible to construct very
complex geological models that match the geologist’s perception of the underlying rock forma-
tions. Due to their many appealing features, corner-point grids are now an industry standard and
the format is supported in most commercial software for reservoir modelling and simulation. The
original corner-point format has been extended in several directions, for instance to allow inter-
section of two straight pillars in the shape of the letter Y. Similarly, the pillars may be piecewise
polynomial curves, resulting in what is sometimes called S-faulted grids.

Using geological models as input to flow simulation introduces several numerical difficulties.
First of all, typical reservoirs extend several hundred or thousand metres in the lateral direction,
but the zones carrying hydrocarbon may be just a few tens of metres in the vertical direction
and consist of several layers with different rock properties. Geological models therefore have grid-
cells with very high aspect ratios and often the majority of the flow in and out of a cell occurs
across the faces with the smallest area. Similarly, the possible presence of strong heterogeneities
and anisotropies in the permeability fields typically introduces large condition numbers in the
discretised flow equations. These difficulties are observed even for grid models consisting of regular
hexahedral cells.

The flexible cell geometry of the corner-point format introduces additional difficulties. First
of all, since each face of a grid cell is specified by four (arbitrary) points, the cell interfaces in the
grid will generally be bilinear surfaces and possibly be strongly curved. Secondly, corner-point
cells may have zero volume, which introduces coupling between non-neighbouring cells and gives
rise to discretisation matrices with complex sparsity patterns. Similarly, for cells with almost
zero volume there will be very large differences in the areas of the cell faces, meaning that large
amounts of flow in the numerical solution may be forced through faces with almost zero area.
Finally, the presence of degenerate cells, in which the corner-points collapse in pairs, means that
the cells will generally be polyhedral and possibly contain both triangular and bilinear faces (see
Figure 2). This calls for a very flexible discretisation that is not sensitive to the geometry of each
cell or the number of faces and corner points.

To model pressure and velocities, most commercial reservoir simulators use traditional finite-
difference methods like the two-point flux approximation scheme. These methods were not de-
signed to cope with the type of models that are now routinely built using modern geomodelling
tools. Indeed, corner-point grids are generally nonorthogonal, meaning that the connections
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Figure 2. Examples of deformed and degenerate hexahedral cells arising in
corner-point grid models.
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Figure 3. Two examples of fault surface in a three-dimensional model with non-
matching interfaces across the faults. (Left) Three-dimensional view. (Right)
Two-dimensional view, where the shaded patch illustrates a “sub-interface” on
the fault surface.

between cell centres are not perpendicular to the cell faces. This implies that two-point flux-
approximation schemes are generally not convergent. More advanced finite-difference methods
[4, 5, 12] that amend the shortcomings of the two-point scheme have been developed, but these
methods are generally hard to implement for general corner-point grids, especially if the grid is
non-conforming with non-matching interfaces. Non-conforming grids arise, using the corner-point
format, in fault zones where a displacement along a hyperplane has occurred, see Figure 3.

In this paper we employ a multiscale mixed finite-element method to model pressure and
velocities in a two-phase model. To implement a multiscale mixed FEM, one needs a discretisation
method for solving elliptic flow problems on the underlying fine grid to define the local multiscale
basis functions. To this end, a finite-difference method may in principle be used. However, for
the current purpose, we seek a method that is more accurate than the traditional two-point flux-
approximation schemes, and somewhat more flexible with respect to grids than the more advanced
multi-point flux-approximation schemes [4, 5, 12]. We propose two alternative approaches aimed
at meeting the geometrical challenges posed by industry-standard geomodels. Our first approach
is to subdivide the hexahedral corner-point cells into tetrahedra in such a way that the resulting
tetrahedral grid is conforming and use a standard Raviart–Thomas mixed finite-element method
as a subgrid solver on the tetrahedral subgrids. Our second approach is to consider the degenerate
hexahedral as general polyhedral cells and use recent mimetic discretisation principles to build a
solver that works directly on the corner-point grid.
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In this paper we will only consider conformal grids. The extension of the methodology to
non-conformal grid with non-matching faces, or alternatively to conforming grids with general
polyhedral faces, is a topic for future research.

3. Mixed Formulation of Elliptic Model Problem

Let Ω ⊂ R3 be a polyhedral domain, and let n be the outward unit normal on ∂Ω. As a
prototype flow problem, we consider the following second-order elliptic equation:

(1)
v = −K∇p, x ∈ Ω,
∇ · v = f, x ∈ Ω,
v · n = 0, x ∈ ∂Ω,

where we require, for compatibility, that
∫
Ω
f dx = 0. Since this is a pure Neumann boundary-value

problem, p is defined only up to an arbitrary constant. An extra constraint, such as
∫
Ω
p dx = 0,

must therefore be added to close the system. Henceforth we refer to p as the pressure and v as
the velocity.

To discretise (1), we introduce an arbitrary partition of Ω into polyhedral-like cells T = {T},
and define the following function spaces:

Hdiv(T ) =
{
v ∈ L2(T )d : ∇ · v ∈ L2(T )

}
,

Hdiv
0 (T ) =

{
v ∈ Hdiv(∪T∈T T ) : v · n = 0 on ∂Ω

}
,

Hdiv
0 (Ω) = Hdiv

0 (T ) ∩Hdiv(Ω).

Furthermore, introduce the following bilinear forms:

b(·, ·) : Hdiv
0 (T )×Hdiv

0 (T ) → R, b(u, v) =
X
T∈T

Z
T

u ·K−1v dx

c(·, ·) : Hdiv
0 (T )× L2(Ω) → R, c(v, p) =

X
T∈T

Z
T

p∇ · v dx

d(·, ·) : Hdiv
0 (Ω)d × L2(∂T ) → R, d(v, π) =

X
T∈T

Z
∂T

π v · nT ds

(·, ·) : L2(Ω)× L2(Ω) → R, (p, q) =

Z
Ω

pq dx.

(2)

Here nT is the unit normal on ∂T pointing outward. We will now use these bilinear forms to
develop a discretisation based on a mixed formulation. The mixed formulation will later be used
for two purposes. Primarily, it will be used to formulate the multiscale mixed finite-element
method to be introduced in Section 4. Secondly, the mixed formulation will be used in Section 5
to develop mixed finite-element and mimetic finite-difference discretisation schemes for the subgrid
problems arising in the multiscale formulation.

3.1. Mixed Formulation. In the general mixed formulation of (1), one seeks a pair of
functions (p, v) ∈ L2(Ω)×Hdiv

0 (Ω) such that

(3) b(u, v)− c(u, p) = 0, ∀u ∈ Hdiv
0 (Ω),

c(v, q) = (f, q), ∀q ∈ L2(Ω).

In mixed FEMs, the system (3) is discretised by replacing L2(Ω) andHdiv
0 (Ω) with finite-dimensional

subspaces U and V . One then seeks approximations p ∈ U and v ∈ V that satisfy (3) for all test
functions q ∈ U and u ∈ V . A typical example of subspaces is the lowest-order Raviart–Thomas
functions, for which U is the space of piecewise constants P0(T ) and V is given by

V ⊂ {u ∈ Hdiv
0 (Ω) | ∇ · u ∈ U, u · nT = const}.

The discretised problem admits a unique solution if there exist constants C1, C2 > 0 such that

b(v, v) ≥ C1‖v‖2
Hdiv

0 (Ω), ∀v ∈ Z, (Z–ellipticity),(4)
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where Z = {v ∈ V : c(v, p) = 0, ∀p ∈ U}, and

sup
v∈V

c(v, p)
‖v‖Hdiv

0 (Ω)

≥ C2‖p‖, ∀p ∈ U (inf-sup condition).(5)

Here ‖ · ‖ denotes the L2 norm. If (4)–(5) hold for positive constants C1 and C2, independent of
mesh resolution, we say that U and V satisfy the Babuška–Brezzi (BB) condition. The inf-sup
condition alone is sometimes called the Ladyzhenskaya–Babuška–Brezzi (LBB) condition.

A mixed FEM solution (p, v) of (3) in U × V is a saddle-point of the following Lagrange
functional:

L(v, p) =
1
2
b(v, v)− c(v, p) + (p, f).

This means that L(v, q) ≤ L(v, p) ≤ L(u, p). Consequently, mixed FEM discretisations lead to
indefinite linear systems. Indefinite systems require special linear solvers and are often considered
hard to solve. Next, we therefore introduce an alternative formulation of the mixed method that
will give a positive definite discret system and thereby simplify the computation of a discrete
solution.

3.2. Hybrid Formulation. In a hybrid formulation [6], the need to solve a saddle-point
problem is avoided by using Lagrange multipliers. The hybrid formulation is therefore sometimes
called the Lagrange multiplier technique. For (1), the hybrid formulation is obtained by replac-
ing the mixed formulation (3) with the following problem: find (v, p, π) ∈ Hdiv

0 (T ) × L2(Ω) ×
L2(∂T \∂Ω) such that

(6)
b(u, v)− c(u, p) + d(u, π) = 0, ∀u ∈ Hdiv

0 (T ),
c(v, q) = (f, q), ∀q ∈ L2(Ω),
d(v, µ) = 0, ∀µ ∈ L2(∂T \∂Ω).

Here ∂T = ∪T∈T ∂T and the new unknowns π correspond to pressures at element faces. To discre-
tise (6), one selects finite-dimensional subspaces V ⊂ Hdiv

0 (T ), U ⊂ L2(Ω), and Π ⊂ L2(∂T \∂Ω),
and seeks (v, p, π) ∈ V × U ×Π such that (6) holds for all (u, q, µ) ∈ V × U ×Π. Observe that in
this approach one departs from the constraint V ⊂ Hdiv(Ω). Instead flux continuity is enforced
through the Lagrange multipliers. In other words, the idea is to first remove the constraint that
the normal velocity must be continuous across element faces and integrate (1) to get a weak form
containing jump terms at block boundaries. Continuity of the normal component is then reintro-
duced by adding an extra set of equations, where the pressure π at the interfaces plays the role
of Lagrange multipliers. This procedure does not change v, nor p, but enables the recovery of
pressure values at element faces, in addition to inducing the desired change in structure of the
linear system resulting from the discretisation.

3.3. Mimetic Formulation. Recent mimetic finite-difference methods (FDMs) [10, 9] can
be seen as finite-difference counterparts of mixed FEMs. The discretisation in a standard mixed
method is introduced by picking discrete function spaces Uh and Vh and using numerical quadrature
to evaluate the integrals over cell volumes and cell faces in the variational formulation (3). In a
mixed method, the discretisation is introduced already in the variational formulation in the form
of a discrete innerproduct. Mathematically, this means that the subspace V in Hdiv

0 (Ω) is replaced
by a discrete subspace of L2(∂T ), and the associated bilinear form b(·, ·) is replaced by a bilinear
form that acts on L2(∂T )×L2(∂T ). This means that instead of seeking an unknown velocity field
v defined over each element T , one seeks a set of fluxes defined over the cell faces ∂T .

The most apparent advantage of mimetic FDMs relative to mixed FEMs, is the ability to han-
dle complex polyhedral grids cells (with strongly curved faces [9]) in a straightforward manner.
Stability and optimal convergence of mimetic FDMs were established by [7, 8] for very general
grids. For flow in porous media, polyhedral cells arise frequently in geological models when con-
forming hexahedral corner-point grids are deformed to model geological phenomena like erosion
and pinch-outs. Similarly, for corner-point grids containing faults and throws, one can subdivide
grid faces and turn the non-conforming corner-point grids into conforming polyhedral grids. How-
ever, in the current paper we only consider conforming corner-point grids. We will return to the
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discrete formulation of mimetic FDM in Section 5.1 and introduce a particular variant [10] that
closely resembles the lowest-order Raviart–Thomas MFEM for hexahedral cells.

In the hybrid formulation of a mimetic FDM, one only needs to replace V with a discrete
subspace M ⊂ L2(∂T ), and b(·, ·) with a bilinear form m(·, ·) that acts on L2(∂T )× L2(∂T ).

3.4. Discrete Formulations. The algebraic systems that arise from mixed finite-element
or mimetic finite-difference discretisations of (1) take the same general form, whether we employ a
standard or a hybrid formulation. In this paper we employ a hybrid formulation only. The hybrid
formulation (6) gives rise to linear systems of the following form:

(7)

 B −CT ΠT

C 0 0
Π 0 0

 v
p
π

 =

 0
f
0

 .
In the mixed FEMs and the mimetic FDM considered herein, the approximation space U

consists of functions that are cell-wise constant

U = span{χm : Tm ∈ T }, χm(x) =
{

1, if x ∈ Tm,

0, otherwise.

Consequently, for v ∈ Hdiv
0 (T ) and p ∈ U , we have

c(v, p) =
∑
m

pm

∫
Tm

∇ · v dx =
∑
m

pm

∫
∂Tm

v · nT ds.

This shows that c(v, p) can be evaluated without having an explicit representation of the velocity
inside each cell, only values on the cell boundaries are needed. Clearly, this is the case also for
d(v, π) for any π ∈ Π ⊂ L2(∂T ). We therefore assume that Π consists of functions that are
constant on each grid face, i.e.,

Π = span{πi
j : |γi

j | > 0, γi
j = ∂Ti ∩ ∂Tj}, πi

j(x) =
{

1, if x ∈ γi
j ,

0, otherwise.

To derive a discrete formulation, it only remains to define an approximation space for velocity V for
the mixed FEM, or alternatively a discrete approximation space M ⊂ L2(∂T ) and a corresponding
bilinear form m(·, ·) to be used in a mimetic FDM. This will be done in subsequent sections. For
now, we only assume that a “velocity” basis function ψm

i is associated with each face γm
i of every

grid cell Tm. Thus, whereas we have one Lagrange multiplier for each “interface”, we have a
velocity basis function for each face of every grid cell. Note that ψm

i lives in different spaces,
depending on whether a mixed FEM or a mimetic FDM is used.

The matrices C and Π in (7) are now given by

C = [c(ψm
i , χn)] and Π = [d(ψm

k , µ
i
j)],

and the matrix B is given by

B = [b(ψm
i , ψ

n
j )], B = [m(ψm

i , ψ
n
j )]

for the mixed FEM and the mimetic FDM, respectively.
The hybrid system (7) is indefinite, but b(ψm

i , ψ
n
j ) and m(ψm

i , ψ
n
j ) are nonzero only if n = m.

Hence, by numbering the basis functions ψm
i on a cell-by-cell basis, the matrix B becomes block

diagonal, and a Schur-complement reduction with respect to B can be performed to obtain the
following positive-definite system for p and π:

(8)
[

D −FT

F −ΠB−1ΠT

] [
p
π

]
=
[

f
0

]
,

where D = CB−1CT and F = ΠB−1CT .
Next, we use the fact that c(ψm

i , χn) 6= 0 only if n = m to deduce that D is a diagonal matrix.
A Schur-complement reduction with respect to D can therefore be performed to yield the following
positive-definite system for π alone:

(9) Sπ = FD−1f , where S = ΠB−1ΠT − FD−1FT .
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Once π is computed, one can easily compute p and v by solving a diagonal and a block-diagonal
system respectively.

4. A Multiscale Mixed Finite-Element Method

Our motivation for introducing mixed and mimetic methods on corner-point grids, is that
they allow an easy implementation of multiscale mixed FEMs on coarsened grids. For instance,
geological reservoir models (which are typically corner-point grid models) may contain multi-
million grid cells, and a direct solution of the elliptic (or parabolic) pressure equation will generally
be infeasible. Instead, it is often sufficient to model the flow on a coarse scale as long as the velocity
field preserves important fine-scale features such as narrow high-permeable flow channels. Narrow
high-flow channels will usually go unresolved in upscaled models, but are adequately modelled
within a multiscale framework, even though the flow equations are solved on a coarse grid.

The multiscale mixed FEM (MsMFEM) was first introduced by Chen and Hou [13] and gave
mass-conservative velocity fields on the discretisation grid (the coarse grid). Below, we outline a
variant of MsMFEM developed by Aarnes [1, 2, 3] that also provides a mass-conservative velocity
field on an underlying subgrid. In fact, the fine-scale velocities define a conservative velocity field
on any grid consisting of a simply-connected union of cells from the fine grid. Thus, the grid used
to simulate fluid transport does not have to coincide with the coarse grid in the multiscale method
or with the underlying fine grid. The multiscale method can therefore easily be combined with
adaptive strategies for solving the fluid transport equations.

In multiscale mixed FEMs one attempts to design basis functions for velocity that embody the
local impact of subgrid variations in the permeability K. To formulate MsMFEM, let B = {B}
be a grid where each grid block B is a connected union of grid cells in an underlying subgrid T .
The grid B will be referred to as the coarse grid, and the subgrid T will be referred to as the
fine grid. For each interface Γij = ∂Bi ∩ ∂Bj in the coarse grid, we assign a corresponding basis
function Ψij . This basis function is related to an unknown function Φij through the gradient
relation Ψij = −K∇Φij . The function Φij is supported in Ωij = Bi ∪Γij ∪Bj and is obtained by
solving (numerically) a local elliptic problem

(10) Ψij · nij = 0 on ∂Ωij , ∇ ·Ψij =
{

fi(x), for x ∈ Bi,

−fj(x), for x ∈ Bj .

Here nij is the outward-pointing unit normal to Ωij , and the source terms fi and fj are given by

(11) fi(x) =
wi(x)∫

Bi
wi(x)dx

, wi =
{
f, if

∫
Bi
f dx 6= 0,

trace(K), otherwise.

The source terms {fi} are defined as in (11) for the following reasons. First, with this definition,
the basis function Ψij forces unit flux across Γij ; that is,

∫
Γij

ψij · nds = 1, where n is the unit
normal of Γij pointing into Bj . This implies that the velocity solution {vij} gives the fluxes across
the respective coarse-grid interfaces. Second, if a conservative method is used to compute basis
functions, the velocity v =

∑
vijψij conserves mass on the subgrid T . Third, choosing special

source terms in blocks containing nonzero source terms allows the method to model radial flow
around point or line sources, such as wells in oil-reservoirs, on the subgrid scale. Finally, by letting
fi scale according to the trace of K, as in (11), one can to some extent avoid unnaturally high
velocities across flow barriers, see [3].

5. Subgrid Discretisation Methods

To implement MsMFEM requires that one is able to discretise the flow problems (10) over the
fine grid, which may have cells with less than eight unique corners, as illustrated in Figure 2. Since
cells with five to seven corners are not diffeomorphic to the unit cube, one cannot use a straightfor-
ward mixed FEM relying on a transformation from hexahedral cells back to the unit cube. Instead,
one must introduce special reference elements and corresponding Piola transforms for each of the
degenerate cases, and this complicates the implementation of a mixed FEM considerably.
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Figure 4. Subdivision of a hexahedral cell into six tetrahedra.

Here we therefore consider two alternative approaches. The first approach introduces a con-
forming tetrahedral subdivision of the corner-point grid and uses the lowest-order Raviart–Thomas
MFEM to discretise (10). To partition the grid, we simply subdivide each corner-point cell as de-
picted in Figure 4, and then remove all tetrahedra with zero volume. In the second approach,
we use a mimetic FDM directly on the fine corner-point grids to generate basis functions for the
MsMFEM.

We would like to point out that by subdividing corner-point cells into tetrahedra, we assume
implicitly that interfaces in the corner-point grid can be described as the union of two planar
triangles. Although mimetic FDMs can handle curved interfaces also, the method presented
below models interfaces in the same way. The convention in reservoir simulation is to assume
that interfaces are bilinear surfaces. Thus, what we consider to be a corner-point cell here is not
according to common practice, but we believe that the fact that we define the grid differently is
a minor cause of concern. Indeed, geological reservoir models are a result of non-deterministic
modelling approaches, and the associated corner-point grid is populated with permeabilities from
a stochastic distribution. In fact, the precise form of the interfaces is not an issue in reservoir
modelling. The assumption that interfaces are bilinear is therefore, in our opinion, invoked only
to facilitate numerical treatment of reservoir simulation models.

5.1. A Mimetic FDM for Corner-Point Grids. In this subsection we describe the ideas
of the mimetic FDMs in [10]. To this end, denote by Fm the set of faces of Tm, and expand v and
u in the basis {ψm

i : Fi ∈ Fm, Tm ∈ T }:

v =
∑
i,m

vm
i ψ

m
i and u =

∑
i,m

um
i ψ

m
i .

Since b(ψm
i , ψ

n
j ) is nonzero only if n = m, we may write

(12) b(u, v) =
∑

Tm∈T
uT

mBmvm,

where Bm is the block diagonal of B associated with Tm, and vm,um ∈ RNm and Nm is
the number of faces of Tm. The main idea in mimetic FDMs is to define matrices Mm so
that (·, ·)Mm = (Mm(·), ·) defines inner-products that mimic the corresponding inner-products
(·, ·)Bm = (Bm(·), ·) associated with the continuous bilinear form b(·, ·), but which do not require
explicit representations of the velocity in each cell.
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In the current presentation, we assume that vm
i represents the total flux out of Tm across

Fi ⊂ Fm:

(13) vm
i =

∫
Fi

v(s) · n ds, Fi ∈ Fm.

Brezzi et al. [7] established that, in addition to symmetry, the following conditions are sufficient
to ensure stability and convergence in pressure and velocity of the mimetic FDM for very general
polygons:

(1) There exist positive constants1 s∗ and S∗ such that

(14) s∗|Tm|vT v ≤ (v,v)Mm ≤ S∗|Tm|vT v,

for all Tm ∈ T and v ∈ RNm .
(2) For every Tm ∈ T , every vm obtained by inserting v = K∇p into (13) for a linear

function p on Tm, and every um ∈ RNm , we have

(15) (vm,um)Mm
+

(
Nm∑
i=1

u(i)
m

)∫
Tm

p dx =
Nm∑
i=1

u
(i)
m

|Fi|

∫
Fi

p ds.

These conditions state that there should exist a global bound on the eigenvalues of all Mm, and
that the inner-products (·, ·)Mm should obey the Gauss–Green formula for linear pressure. A direct
consequence is that the method will be exact for linear pressure; that is, the fluxes obtained by
the numerical solution will match the fluxes corresponding to the exact solution.

Explicit formulae for computing Mm-matrices that obey (14)–(15) in the case where the
variables vm

i represent net face velocities were given in [10]. Below we give the corresponding
formulae for the case where the variables represent fluxes. To this end, let Nm be the matrix
whose i’th row is defined by

(16) nm,i =
1
|Fi|

∫
Fi

nT
i ds,

where ni is the unit normal to face Fi pointing out of Tm; let Cm be the matrix whose i’th row
is defined by

(17) cm,i =
1
|Fi|

∫
Fi

(x− xm)T ds,

where xm is the centre of Tm; and let Dm be the diagonal matrix containing the areas |Fi| of
each face. Finally, let Zm be a Nm × (Nm − d) matrix whose columns form an orthonormal
basis for the null space of NT

m, and let Um be a symmetric positive-definite matrix of dimension
(Nm − d)× (Nm − d). Then the matrix Mm defined by

(18) Mm = Mm,1 + Mm,2,

where

(19) Mm,1 =
1

|Tm|
CmK

−1CT
m, Mm,2 = D−1

m ZmUmZT
mD−1

m ,

satisfies the discrete Gauss–Green formula (15). In addition, some mild restrictions must be
imposed on the grid and on the eigenvalues of Um in order for Mm to also satisfy condition
(14). We should also remark that explicit formulae for the inverse of Mm (for the case where the
variables represent face velocities) were also given in [10]. These formulae may be used to assemble
B−1 directly. This is advantageous both with respect to computational efficiency, and with respect
to avoiding numerical inversion of nearly singular Mm-matrices that arise for elements having one
or more faces with almost zero area. The reader should consult [9, 7] for further details.

1The bounds in this expression differ from the bounds given in [10] in the sense that we use flux unknowns
rather than velocity unknowns. Thus, to obtain the constants s∗, S∗ in [10], one should scale the components of v
by the inverse area of the corresponding faces.
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Next, we motivate the form of Mm given in (18), by considering multiscale basis functions
similar to (10), and thus making a twist to the presentation given in [10]. Hence, for each face
Fi ⊂ Fm, define ψi by

(20) ψi = −K∇pi, ∇ · ψi =
1

|Tm|
, ψi · n =

{
1/|Fi| for x ∈ Fi

0 for x ∈ Fj .

One could now, theoretically, define the matrix Mm by [Mm]ij = b(ψi, ψj), but for general poly-
hedral cells, the computation of b(·, ·) is non-trivial, and thus not practical. Instead one could
consider a first order approximation, i.e., find Mm such that [Mm]ij = b(ψi, ψj)+O(h2), where h
is the grid-cell diameter. For this to hold true, it is sufficient to require uT Mmv = b(u, v) when-
ever the sum of the polynomial orders of u and v are less or equal to one. The mimetic FDMs
are based on a somewhat stricter requirement, that is, uT Mmv = b(u, v) if one of the functions
are constant, and the other is any expansion in the basis functions (20). For a constant vector
field v, the corresponding vector of fluxes over the faces of Tm is given by DmNmv. Thus, the
inner-product matrix Mm must satisfy the relation

(21) eT
i MmDmNmej = b(ψi, ej), i = 1, . . . , Nm, j = 1, 2, 3,

where ei is the i-th unit vector. Since K−1ej = ∇
(
(x− xm)TK−1ej

)
, we have by the Gauss-Green

theorem: ∫
Tm

ψT
i K

−1ejdx =
∫

∂Tm

(
(x− xm)TK−1ej

)
ψi · ni ds = eT

i CmK
−1ej .

It follows that Mm needs to satisfy the identity MmDmNm = CmK
−1. Similarly one must have

NT
mDmMm = K−1CT

m. Following [10], we have

[NT
mDMCm]ij = n

(i)
k

∫
Fk

(x(j) − x(j)
m ) ds

=
∫

∂Tm

(x(j) − x(j)
m )(∇xi) · n ds

=
∫

Tm

∇(x(j) − x(j)
m ) · ∇xi dx = δij |Tm|.

Thus we have NT
mDmCm = |Tm|I, and the form of Mm,1 in (19) follows. The matrix Mm,1 is

obviously not positive definite, so the approach in [10] is to add a matrix Mm,2 such that Mm =
Mm,1 +Mm,2 becomes positive definite, but at the same time does not weaken the approximation
properties of Mm. This is obtained by choosing Mm,2 such that MmDmNm = Mm,1DmNm, i.e.,
Mm,2DmNm = 0. This readily gives the form of Mm,2 given in (19).

Hence, Mm,1 is defined so that b(u, v) = uT Mm,1v if u or v belongs to the space of constant
velocities V0, and Mm,2 is defined so that the inner-product (u,v)Mm is not influenced by Mm,2 if
either u or v corresponds to a constant velocity field. This leaves us only freedom to choose Um. If
we view the mimetic methods as a discrete variant of the mixed finite-element method defined by
the basis functions in (20), one should try to define Um so that the following equivalence relation
holds:

(22) m∗(v,v)Bm ≤ (v,v)Mm ≤M∗(v,v)Bm , ∀v ∈ RNm

for some positive constants m∗ and M∗ independent of the mesh and coefficients K of the problem.
Here Bm is the local stiffness matrix that stems from the mixed finite-element method defined by
(20). Requiring that an equivalence relation of this form should hold might imply that Um should
be chosen differently for different cell geometries. However, one generally would like to be able to
define Um independent of the grid. To provide some insight into how Um should be chosen if it
is to be independent of cell geometries, we consider two examples.

Example I: Tetrahedral elements. For tetrahedral grids, the Raviart–Thomas MFEM space of
lowest order is defined by

VRT0 = V0 ⊕ V1,



12 J.E. AARNES, S. KROGSTAD, K.-A. LIE, AND V. LAPTEV

where V1 = {β(x− xm) : β ∈ R}. Thus, write v = v0 + v1 where v0 ∈ V0 and v1 ∈ V1. Since K is
assumed to be cell-wise constant, we have

b(u, v) = (DmNmu0)T Mm,1(DmNmv0) +
∫

Tm

uT
1 K

−1v1 dx.

Thus, to show that b(u, v) = uT Mmv for all u, v ∈ VRT0, we only need to show that there exists
a scalar Um such that

uT
1 Mmv1 =

∫
Tm

uT
1 K

−1v1 dx,

where u1 and v1 are the flux vectors corresponding to u1 and v1 respectively. To this end, observe
first that if v1 = x − xm, then v1 = 3|Tm|

4 I. Thus, since we have that CT
mI = 0 for tetrahedral

elements, we derive that uT
1 Mmv1 = uT

1 Mm,2v1. Next, observe that since ∇ · V0 = 0, we have
IT DmNm = 0, and hence that D−1

m Zm = I/
√∑

i |Fi|2. Thus, in order to have Mm = Bm, we
must define Um by

Um =
∑

i |Fi|2

9|Tm|2

∫
Tm

(x− xm)TK−1(x− xm) dx.

Example II: Hexahedral elements. For regular hexahedral elements (i.e., shoe-box shaped
cells), the Raviart–Thomas MFEM space of lowest order is defined by

VRT0 = V0 ⊕ V1,

where V1 = span({(eje
T
j )(x−xm) : j = 1, 2, 3}) and ej is the vector equal one in component j and

zero elsewhere. For a full tensor K, we obtain with similar reasoning as above that Mm = Bm by
choosing

(23) Um =
|Tm|

6
diag(K−1), ZT

m =
√

2
2

 1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

 ,

where diag(K−1) denotes the diagonal part of K−1. In particular, if K is isotropic, then

(24) Um =
|Tm|

2trace(K)
I.

These examples indicate that Um should scale proportional to the eigenvalues of K−1 and pro-
portional to the volume of |Tm|.

The next two subsections are devoted to demonstrating properties of the two subgrid dis-
cretisation techniques: MFEM on tetrahedral subdivisions of corner-point cells and MFDM on
corner-point cells. In Section 5.2, we briefly discuss monotonicity effects for both subgrid dis-
cretisation methods for skew grids and full tensor permeabilities. In Section 5.3, we apply the
MFDM to a problem with a highly oscillatory solution and try to show that accurate results are
obtained by using the simple Um defined in (24) also for general corner-point grids and anisotropic
permeability tensors.

5.2. Grid and Full Tensor Effects. In this section we consider effects of skew grids and
full-tensor permeability for the mimetic method with Um defined by (24), and for the mixed
method on a tetrahedral subgrid. Let K be the constant diagonal permeability tensor with entries
kxx = 10, kyy = 1 and kzz = 0.1, and let Kθ = RθKR

T
θ , where Rθ is the matrix rotating the

xy-plane by the angle θ. We consider the problem ∇ · Kθ∇p = 0 on Ω = [0, 1]3, with Dirichlet
boundary conditions p = 1 for x = 0, p = 0 for x = 1 and zero Neumann conditions elsewhere. We
remark that both methods are exact for θ = 0 and θ = π/2 as long as the grid has planar faces.

We consider a Cartesian grid and a highly distorted skew grid, both with 1 000 cells, as shown
in Figure 5. In Figure 6 we have plotted the total flow-rates and maximum block-pressures for
0 ≤ θ ≤ π/2 for the two methods on the Cartesian grid. The maximum block-pressures are
plotted as an indication of loss in monotonicity. Note that these curves should not match for the
two methods since they use different grids. As seen, the two methods agree closely in total flow-
rate, while a slight loss in monotonicity is observed for the tetrahedral discretisation. In Figure 7
we have plotted the corresponding results for the skew grid. Still we observe close agreement in
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Figure 5. Cartesian and skew grid.
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Figure 6. Results for various Kθ on the Cartesian grid: total flow-rate (left)
and maximum block-pressure (right).
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Figure 7. Results for various Kθ on the skew grid: total flow-rate (left) and
maximum block-pressure (right).

flow-rates, while the tetrahedral discretisation over-predicts the maximal pressure by about 5%.
We note that for higher anisotropy ratios, loss in monotonicity is also observed for the mimetic
method for this problem.

5.3. Problems with Oscillatory Pressure Solutions. The purpose of this section is to
show that to get accurate pressure solutions, it is important to choose Um so that (22) holds
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Table 1. Pressure errors for mimetic FDM with different Um.

Um
|Tm|

2trace(K)I
1

2trace(K)I
|Tm|

6

Isotropic 2.229 · 10−1 1.443 · 102 1.443 · 102

Anisotropic 2.281 · 10−1 2.445 · 102 1.384 · 101

with constants that are nearly independent of the grid and problem coefficients. To this end, we
must consider problems where the contributions from Mm,2 in the local discrete inner-products
are relatively large compared to the contributions from Mm,1. This is achieved by considering
problems with oscillating pressure solutions.

To construct a problem with an oscillating solution, we define

p(x, y, z) = cos(5πx) cos(5πy) cos(5πz) in Ω = [0, 1]3.

Clearly, this function oscillates rapidly in Ω. Moreover, if K is a constant diagonal tensor, we can
easily show that p solves (1) with

f(x, y, z) = (5π)2trace(K)p(x, y, z).

Next, we partition Ω into a uniform 10 × 10 × 10 hexahedral grid, and compute numerical
pressure solutions ph using the mimetic method with various choices of Um. We assess the accuracy
of the pressure solutions relative to the exact solution p using the following measure:

e(ph) = ‖ph − p‖L2/‖ph‖L2 .

The numerical solutions are normalised so that they have zero average in Ω. The reason why we
do not compare velocity solutions is that Um has generally less influence on the velocity solutions.

We consider an isotropic case with kxx = kyy = kzz = 1000, and an anisotropic case with
kxx = 100, kyy = 0.01, and kzz = 1. The results in Table 1 demonstrate that the mimetic
FDMs can produce large errors if the matrix Um is not properly scaled. However, the results also
indicate that the mimetic FDM with Um given by (24) produces pressure solutions for which the
magnitude of the oscillations is about right, also in the anisotropic case.

5.4. General Remarks. We have now introduced two alternative discretisation methods for
generating the velocity basis functions needed in a multiscale mixed FEM for corner-point grids. In
the first method we subdivide corner-point cells into tetrahedra, and solve (10) on the tetrahedral
grid using the lowest-order Raviart–Thomas MFEM. In the second method, we discretise (10)
directly on the corner-point grid using mimetic finite differences.

In the mixed approach we obtain velocity fields that are mass conservative on a tetrahedral
grid. This is an advantage if we are to use a streamline method to compute the fluid transport.
Streamline tracing and time-of-flight computations can be done exactly for tetrahedral grids by
transforming to the reference tetrahedron, since the Jacobian of the mapping from physical space
to reference space is constant. On the downside, the linear systems we need to solve to generate
multiscale basis functions using the mixed approach are larger than the corresponding systems for
the mimetic method.

Although mimetic methods are less mature, they are quite easy to implement on complex
grids and allow for a large degree of freedom in using unstructured grids consisting of general
polyhedral cells to model complex geology. We believe that using a mimetic method as subgrid
solver will be particularly advantageous to model flow in reservoirs with faults. Faults are usually
modelled as hyperplanes, i.e., as surfaces. Across fault-faces, the corner-point grids are generally
non-conforming, having non-matching interfaces, see Figure 3. A mimetic method handles grids
with non-matching faces in a natural way by assigning a “basis function” for velocity to each “sub-
face” γij = ∂Ti ∩ ∂Tj of the faults. In a mixed method, flux continuity across fault-faces can be
modelled using the hybrid formulation with a Lagrange multiplier (a mortar) for each “sub-face”
of the fault-faces. However, although we feel that the mimetic method handles non-matching faces
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in a more natural way, we will not demonstrate this flexibility with respect to non-conforming grids
arising in grid-models with faults in this paper.

6. Numerical Comparisons

In this section we examine the quality of MsMFEM solutions obtained using the two alter-
native subgrid discretisation techniques to compute basis functions. To this end, we consider two
examples. In Section 6.1, we consider a small Y-shaped synthetic sector model with three differ-
ent isotropic permeability structures and discuss several fundamental numerical properties of the
multiscale method. Then in Section 6.2, we consider a larger and more complex model of a layered
bed on meter-scale.

In the following we will only compare the quality of the MsMFEM velocity solutions. To
compare the quality of the multiscale velocity fields we will consider two error measures: (i) errors
in fluxes across interfaces in the corner-point grid, and (ii) saturation errors in a two-phase flow
scenario. The error in fluxes is measured as follows:

(25) e(v) = ‖(vref − v) · n‖L2(∂T )/‖vref · n‖L2(∂T ).

Here vref is obtained by solving (1) using the subsolver directly on the subgrid (i.e., MFDM on
the corner-point grid and RT0 MFEM on the tetrahedral subgrid), v is the multiscale solution, T
is the corner-point grid, and n is a unit vector normal to ∂T .

The error in fluxes (25) is not always a good indicator for the overall accuracy of a solution,
especially when the velocity oscillates rapidly. We therefore also monitor the impact the errors
in the velocity have on the saturation field obtained by solving a two-phase transport equation of
the form,

(26) st +∇ · (Fw(s)v) = max{f, 0}+ Fw(s) min{f, 0},
where Fw(s) = s2/(2s2 − 2s + 1). This nonlinear hyperbolic equation is discretised using an
implicit upstream-weighted finite-volume scheme and solved using a Newton–Raphson method.
For clarity, we emphasise that (26) will be solved on the corner-point grid. In other words, the
sub-resolution inherent in the MFEM (subgrid) solver will not be exploited here. To assess the
accuracy of the solutions of (26), we measure how much they differ from the reference solution at
0.5 PVI, i.e., we compute

e(s) = ‖sref(·, T )− s(·, T )‖L2/‖sref(·, T )‖L2 ,

where s is the saturation induced by the MsMFEM velocity fields, sref is the saturation induced
by vref , and T is defined by ∫ t=T

t=0

max{f, 0} dt = 0.5|Ω|.

6.1. A Y-shaped Reservoir. The first example is a synthetic reservoir in the shape of the
letter Y represented by a grid with 32 × 32 × 8 blocks, see Figure 8. This grid model is much
smaller than models to which one usually would apply a multiscale method. However, the size of
the model is chosen on purpose to illustrate some fundamental aspects of the multiscale method.

The model is equipped with three different isotropic permeability fields: (i) homogeneous per-
meability; (ii) a log-normal field where the permeability values vary six orders of magnitude; and
(iii) a fluvial type permeability field consisting of high-permeable channels on a low-permeable
log-normal background; see Figure 8. The log-normal permeability field has been generated by
sampling random numbers independently in each cell, applying a Gaussian smoothing with vari-
ance 5.0 in each direction, adjusting the variance by multiplying with a constant, and finally taking
the exponential. The mean is 2.58 and the variance is 184.1. The artificial, fluvial-like permeabil-
ity was generated by adding random sinusoidal curves of high permeability to a low-permeable
log-normal background field. The mean is 29.0 and the variance is 2246.

We consider two different well configurations (see Figure 8): (i) an injector is placed at the
base of the Y and one injector in each of the outer corners of the arms of the Y; and (ii) an injector
and a producer in the two outer corners of the arms of the Y (to the right and left, respectively,
in Figure 8). The pressure and velocity distributions are only computed once.
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Figure 8. The Y-shaped reservoir: log-normal permeability field with well con-
figuration number one (left), fluvial permeability field with well configuration
number two (right), and partitioning into 4× 4× 1 coarse blocks (bottom).

Table 2. Errors in fluxes and saturations for the Y-shaped reservoir computed
using MsMFEM with subgrid solvers MFDM and RT0 MFEM for well configu-
rations number one.

RT0 MFEM Homogeneous Log-normal Fluvial
Coarse grid e(v) e(s) e(v) e(s) e(v) e(s)
16× 16× 4 0.1233 0.0161 0.1915 0.0495 0.4069 0.2299
8× 8× 2 0.1300 0.0206 0.2769 0.1087 0.3845 0.2904
4× 4× 1 0.1070 0.0225 0.2135 0.1501 0.3046 0.2420
2× 2× 1 0.0112 0.0090 0.1111 0.0724 0.1564 0.0680

Mimetic FDM e(v) e(s) e(v) e(s) e(v) e(s)
16× 16× 4 0.1152 0.0193 0.1963 0.0532 0.4143 0.2278
8× 8× 2 0.1282 0.0213 0.3174 0.1157 0.4742 0.3607
4× 4× 1 0.1070 0.0249 0.2212 0.1582 0.3119 0.2442
2× 2× 1 0.0111 0.0103 0.1214 0.0751 0.1589 0.0679

To define the coarse grids for the multiscale method, we use a very simple strategy and
partition the grid uniformly in index space. In other words, think of the geomodel as a regular
32×32×8 Cartesian grid, and partition it into coarse Mx×My×Mz grids, in which each coarse cell
has (32/Mx)× (32/My)× (8/Mz) sub-cells. Tables 2 and 3 report errors in fluxes and saturations
obtained on four different coarse grids for well configurations number one and two, respectively.
The results are similar for the two subgrid solvers: both for MFEM and MFDM the multiscale
methodology is able to reproduce the fine-scale reference solutions with reasonable accuracy for
the homogeneous and the log-normal permeability fields. In the following, we will comment more
on three interesting trends in the errors for both subsolvers.
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Table 3. Errors in fluxes and saturations for the Y-shaped reservoir computed
using MsMFEM with subgrid solvers MFDM and RT0 MFEM for well configu-
ration number two.

RT0 MFEM Homogeneous Log-normal Fluvial
Coarse grid e(v) e(s) e(v) e(s) e(v) e(s)
16× 16× 4 0.1502 0.0270 0.2281 0.0486 0.4191 0.2533
8× 8× 2 0.1554 0.0550 0.2937 0.0821 0.3633 0.2650
4× 4× 1 0.1756 0.1428 0.2081 0.1263 0.2942 0.2668
2× 2× 1 0.2509 0.3570 0.2812 0.3638 0.1892 0.1771

Mimetic FDM e(v) e(s) e(v) e(s) e(v) e(s)
16× 16× 4 0.1409 0.0266 0.2307 0.0478 0.4215 0.2440
8× 8× 2 0.1567 0.0584 0.3472 0.0934 0.4466 0.3331
4× 4× 1 0.1776 0.1527 0.2097 0.1302 0.2974 0.2711
2× 2× 1 0.2537 0.3735 0.2810 0.3720 0.1846 0.1799

In Table 2, we see that the best resolution is obtained with the smallest and largest coarse
grids for the homogeneous and log-normal permeability fields. For the 16× 16× 4 coarse grid, the
coarse-scale system is able to resolve the majority of the global flow. Similarly, for the 2 × 2 × 1
coarse grid, the multiscale basis functions are able to capture most of the flow pattern in the arms
and the leg of the Y. For the other two coarse grids, the coarse-scale system is too small to capture
the global flow accurately and the local fine-scale systems are too small to represent the (global)
flow patterns accurately in the multiscale basis functions. Previous experience with MsMFEM
on Cartesian grids indicate that typical upscaling factors of 4–16 in each direction are the most
computationally feasible, giving local problems with between 100 and 1 000 cells.

The flow pattern for the fluvial permeability field is dominated by high-permeable heteroge-
neous structures that have the same length scale as the whole reservoir. The flow patterns rep-
resented in the multiscale basis functions are restricted locally to each pair of coarse-grid blocks
by the assumption of no-flow boundary conditions on the local flow problems. In other words,
the local flow problems are not able to accurately resolve and represent the long correlation struc-
tures in the high-permeable channels. This is reflected in Tables 2 and 3, where one can observe
that the resolution is improved by increasing the size of the coarse blocks. For fluvial, and other
heterogeneities with long correlation lengths, a better approach would be to use global boundary
conditions to define the multiscale basis functions. That is, to use a single initial pressure solution
on the fine grid to compute representative boundary conditions for the local flow problems; see
e.g., [2]. This way, the multiscale basis functions are able to represent local parts of flow patterns
extending beyond a single cell in the coarse grid.

For the second well configuration, the velocity profile has a sharp turn at the intersection of
the two arms of the Y. The basis functions are formed by driving a unit flow from one grid-block to
its immediate neighbour, and as such have no natural representation of flow fields turning ninety
degrees. This is particularly true for the homogeneous case, where the multiscale basis functions
will correspond roughly to the RT0 basis functions on the coarse grid. The sharp turn at the
intersection will therefore be more smeared out as the size of the cells in the coarse-grid increases.
Hence, the resolution deteriorates when the size of the coarse blocks increases, as observed for the
homogeneous and log-normal permeabilities in Table 3.

6.2. A Wavy Depositional Bed. In the second example we consider a corner-point grid
modelling a wavy depositional bed on a meter-scale. The corner-point grid has vertical pillars
that form a uniform 30× 30 grid in the horizontal plane. The model has 100 very thin layers, of
which many collapse to a hyper-plane in some regions; see Figure 9. The grid has 29 629 active
cells originally. However, thirty-one of the cells have a degeneracy as in the lower-right plot in
Figure 2. If we assume that all corner-point cells are unions of tetrahedra as in the tetrahedral
MFEM subgrid, the two internal parts of each of these thirty-one cells are only connected through
a single line (i.e., through an interior interface of zero area). These cells are therefore split into
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Figure 9. Corner-point grid for the wavy depositional bed: original grid (left)
and the partition into a 5× 5× 10 coarse grid (right)

Figure 10. Nine different coarse cells arising from a uniform partitioning of the
wave-bed model in index space. In the plot, strongly curved cell faces have been
split into triangles.

two cells each, giving a grid that altogether consists of a total of 29 660 cells. The total number
of tetrahedra in the tetrahedral MFEM subgrid is 147 334.

As in the previous example, we apply a uniform partition in index space to obtain the Mx ×
My×Mz coarse grids, where each cell consists of (30/Mx)×(30/My)×(100/Mz) sub-cells. However,
unlike the previous example, we now obtain cells that have zero volume, cells that are disconnected,
and cells that contain internal holes; see Figure 10. Each disconnected coarse cell is split into a
subcollection of connected cells, coarse cells with zero volume are removed, and all other cells are
left unchanged.

An alternative grid generation approach would be to partition the grid in physical space rather
than in index space. In other words, to divide the physical space into a set of uniform hexahedral
cells and define each coarse cell as distinct unions of cells preserving the volume of the hexahedral
cells as close as possible. Using this approach, the cells would have a cubic-like shape, but the
surface of the cells would become more irregular. We intend to investigate more closely how to
develop a good strategy for choosing coarse grids in future work.
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Figure 11. Logarithm of the heterogeneous, isotropic permeability field for the
wavy bed. The permeability varies between 0.10 mD and 1.69 D, with mean 94.9
mD and standard deviation 0.22.

Table 4. Errors in fluxes and saturations for the wavy depositional bed com-
puted using the MsMFEM with subgrid solver MFDM (top) and RT0 MFEM
(bottom).

RT0 MFEM Isotropic K Anisotropic K Heterogeneous K
Coarse grid e(v) e(s) e(v) e(s) e(v) e(s)
10× 10× 10 0.1910 0.0223 0.2314 0.1434 0.1967 0.0912
6× 6× 2 0.1256 0.0412 0.2030 0.1734 0.1499 0.1456
3× 3× 1 0.0607 0.0653 0.0931 0.1300 0.0793 0.1077

Mimetic FDM e(v) e(s) e(v) e(s) e(v) e(s)
10× 10× 10 0.2028 0.0264 0.2485 0.1427 0.2152 0.0941
6× 6× 2 0.1302 0.0420 0.2071 0.1691 0.1547 0.1406
3× 3× 1 0.0624 0.0651 0.0948 0.1271 0.0807 0.1057

We now consider three different permeability fields; a homogeneous and isotropic field; a
homogeneous and anisotropic field for which K is diagonal with kxx = kyy = 1000 and kzz = 1;
and a heterogeneous and isotropic field for which the permeability in each layer is log-normal,
see Figure 11. Although our grid geometry originally models a depositional bed, we here use
it as a sector model and specify a standard quarter-five-spot flow scenario with injection in the
first vertical column and production in the last vertical column of the grid. Table 4 reports the
corresponding errors in fluxes and saturation obtained on three different coarse grids. The good
resolution of the two multiscale solvers is amazing, given the complex shapes of the coarse-grid
blocks as depicted in Figure 10.

7. Concluding Remarks

Multiscale methods have become popular among researchers in many engineering disciplines.
Nevertheless, multiscale methods are generally regarded as immature, and few, if any, have pene-
trated into industrial use. In this paper we have tried to promote the use of multiscale methods
for flow simulation of geometrically complex and highly heterogeneous reservoir models. To this
end, we have extended the multiscale finite-element method (MsMFEM) to corner-point grids,
which is the grid format used by most commercial geomodelling software and reservoir simulators
to model porous rock formations containing producible hydrocarbon.

The numerical results presented in the paper demonstrate that the multiscale mixed finite-
element method provides detailed and quite accurate velocity fields and saturation profiles for
two-phase simulations on typical geomodels arising in real-life reservoir engineering. Combined
with previous results on Cartesian grids [1, 2, 3], we believe that these results demonstrate that the
multiscale mixed finite-element formulation is a versatile and robust alternative to the traditional
upscaling/downscaling approach used in the petroleum industry. For a further comparison of
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various state-of-the-art upscaling and multiscale methods we refer the reader to another paper in
this special issue [14].

A particular advantage of the multiscale mixed formulation is its ease of implementation.
Given a proper discretisation methodology on the underlying corner-point grid, it is straightfor-
ward to implement the multiscale mixed method on top of the existing pressure solver. In fact,
our coarse-grid Matlab code used in Section 6—including grid processing, hybrid formulation, and
linear algebra—only consists of about 200 code lines. Implementing MsMFEM in a commercial
solver should therefore not be a daunting task.

Another advantage of the MsMFEM formulation is the ease with which one handles the
coarse grids. In particular, we have demonstrated how one can avoid the difficulties of resampling
that are usually encountered in grid coarsening, since the multiscale mixed formulation allows
the cells in the coarse grid to be chosen as an (almost) arbitrary connected collection of cells in
the underlying geological model. We believe that this will prove to be very advantageous when
considering more complex geomodels containing fractures and faults, for which the corresponding
geological models will generally be non-conforming and therefore have non-matching interfaces.
In ongoing research we try to extend the multiscale formulation to industry-standard geological
models with fractures/faults and non-conforming fine grids.

In summary, we believe that the multiscale mixed finite-element method can greatly facili-
tate flow simulation on complex grid models and potentially be used to perform two-phase flow
simulations directly on full-scale geological models.

In the current paper, the multiscale mixed formulation was used in combination with two
different subgrid solvers that both aim to give accurate and robust discretisations with minimal
grid-orientation effects on grids with strong anisotropies and irregular geometries. Although both
subgrid solvers give good results, the results obtained with the recent mimetic formulation are
particularly promising and encourage further development towards future use within reservoir
simulation. Mimetic methods work directly on the corner-point grid, can be formulated for general
polyhedral cells with curved faces, and are easy to implement. Moreover, our (limited) experience
indicates that they are quite robust with respect to the anisotropies and geometrical complexities
encountered in industry-standard corner-point grids.
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