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Motivation

- Modern reservoir simulators are not able to run routine
simulations on the geological scale.

- Upscaling techniques are used to create coarsened grid models
for day-to-day simulation.

- The price to pay is less reliable results.

- Multiscale methods offer the possibility of bridging the gap
between the geoscale and the simulation scale.
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Model problem (heterogeneous porous media flow)

The Darcy law and the continuity equation for phase 7 reads

V;, = —k)\Z(VpZ — pZG) (1)
P0S; +V - vy = q; (2)

Combining (1) and (2) gives the elliptic equation for pressure
v=—kAVp+kA,G and V- -v=gq.

Here k is bounded, symmetric and uniformly positive definite.
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- The permeability & typically span over many length scales.

- The solution may contain a multiple scale structure.

- Details at all scales have a strong impact on the true solution.

- Conventional numerical methods which are not adaptive to the
information at the subgrid scales may give poor accuracy.

- A prohibitively large number of variables are often needed to
resolve all the subgrid scales.

- Hierarchical or multiscale modeling approaches are needed.
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The Multiscale Finite Element Methods

The multiscale finite element methods (MsFEMs) is a class of
FEMs for (nearly) elliptic problems with multiple scale coefficients.

Multiscale methods: Methods that incorporate fine scale
information into a set of coarse scale equations in a way which
Is consistent with the local property of the differential operator.

The MsFEMs are based upon the construction of appropriate
" coarse-scale” approximation spaces that are adaptive to the
local property of the elliptic differential operator.
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Some of the features which make MsFEMs an attractive tool for
reservoir simulation are:

- The elliptic " parallelization”: subgrid resolution at a low cost.

- The flexibility: the natural ability to handle
- heterogeneous and anisotropic materials,

- irregular and unstructured grids.

- The ideal foundation for adaptive numerical schemes for the
solution of advective transport equations.
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The Mixed Multiscale Finite Element Method

Let the reservoir domain () be partitioned into a family of mutually
disjoint elements L = { K'} of arbitrary shape and size.

The original mixed MsFEM applies base functions 1);; which satisfy
Vij = —kAVéi;, V- =%£K™" in K/UK;,

and are subject to prescribed boundary conditions ;; - n;; = v;; on
I';; = O0K; N OK; and no-flow conditions on O(K; U K;)\I';;.

The boundary condition v;; is chosen such that v;; € H»%(Q).
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To formulate the corresponding mixed MsFEM we assume, for
simplicity, homogeneous boundary conditions on 0f).

We then seek v € V = span {1;;} and p € Py(K) such that

/(k)\)_lv-uda;—/pv-udx = /QG-udaj
Q Q o A

/lv-vda? = /qlda?
Q Q

for all w € V and | € Py(K).
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How to get subgrid resolution

- Objective: We want to be able to simulate the phase transport
at the subgrid level without violating the mass balance.

- Adjustments: We need to alter the definition of the base
functions and to add a correction term to the mixed FEM
equations in order to account for the difference between the
pressure at the wells and the average pressure in the well blocks.

- Extensions: For multi-phase flow we need to develop an efficient
way to update the base functions throughout the simulation.
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The modified base functions
The base functions ;; for the modified mixed MsFEM satisfy

. if dx =0,
V-, = = |fJ§\ . fo
— if [ fdx#0,
in K; U K; and prescribed boundary conditions on 0(K; U K).

The boundary conditions v;; determine how well V' incorporates the
local property of the differential operator. They should therefore
reflect the subgrid heterogeneity and radial flow in the well blocks.
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The modified approximation space for the pressure

To modify the approximation space for the pressure, let p be a
function that vanishes outside the well blocks and satisfies

/ﬁd:v:(), b= —kAVp+ kNG, V-d=¢q, 0-n=vg
K

in the well blocks for some boundary condition v ~ v -n on 0K.

If v solves the mixed formulation, v;; = f'”— on I';; and
I

v = v-n on K, then there exist a p € U = P+ Po(K) such that
v satisfies the mixed equations for all w € V and [ € Py(LC).
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The modified mixed multiscale FEM

Find v € V = span {%;,} and p € U such that

/(k)\)_lv-uda:—/pv-udx = /QG-udaj
Q Q o A

/lv-vd:ﬁ = /qlda?
Q Q

for all w € V and | € Py(K).
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Numerical Test Case (two-phase flow)

The test case is an upscaled version of the 10th SPE comparative
solution project, model 2. The model specifications are as follows.

Producer 1

oducer 3
I Injeictor - 30 x 110 x 17 cells.
roducer 2 |
\P“\'\Pd/ o
o R __I_____r_o_ucer 1zoc/>f;./’ - Sim. time: 2000 days.

Aot g0 - - - o s
b - No-flow BC.
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Tarbert formation
30 x 110 x 7 cells.
5 x 11 x 1 blocks.

Upper Ness formation
30 x 110 x 10 cells.
5 x 11 x 2 blocks.

<« back »



Numerical Test Case (two-phase flow) 15 of 20

To access the accuracy of the flow scenarios induced by the mixed
MsFEM we compare the water-cut curve with the corresponding
water-cut curve induced by a reference solution.

The water-cut curves plot the fraction of water in the produced
fluid and is a more sensitive measure than the accumulated
oil-production curves which are also frequently used.

We also quantify the discrepancy between the water-cut curves

Wl and W for producer i with the norm measure
p!ms ngef_wzanL?
N P
{ L2
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We now consider dynamic two-phase flow and define

S—S.0 \° 1 -8 -5, \°
Aw (S) _C(l—Srw—Sr) and A\, (S5) = (1_Srw_5ro>

where S,.., = S,, = 0.2 are the residual water and oil saturations.
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Dynamic
A= A\, + A, and
PwAw T+ Polo.

flow:

two-phase

e, lc=1|c=.25
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es'® | .031 067
ey® | .006 022
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Concluding Remarks

- The key to the success of the multiscale finite element methods
(MsFEMSs) is the selection of proper boundary conditions.

- MsFEMs may be used to accelerate simulations or give improved
accuracy at a finer scale. Their flexibility also make them
amenable for solving problems with irregular unstructured grids.

- Unexplored issues include "adaptivity without refinement” which
can be used to model e.g., crack propagation in materials.
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