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Motivation

· Modern reservoir simulators are not able to run routine

simulations on the geological scale.

· Upscaling techniques are used to create coarsened grid models

for day-to-day simulation.

- The price to pay is less reliable results.

· Multiscale methods offer the possibility of bridging the gap

between the geoscale and the simulation scale.
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Model problem (heterogeneous porous media flow)
The Darcy law and the continuity equation for phase i reads

vi = −kλi(∇pi − ρiG) (1)

φ∂tSi +∇ · vi = qi . (2)

Combining (1) and (2) gives the elliptic equation for pressure

v = −kλ∇p+ kλgG and ∇ · v = q .

Here k is bounded, symmetric and uniformly positive definite.
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· The permeability k typically span over many length scales.

- The solution may contain a multiple scale structure.

· Details at all scales have a strong impact on the true solution.

- Conventional numerical methods which are not adaptive to the

information at the subgrid scales may give poor accuracy.

- A prohibitively large number of variables are often needed to

resolve all the subgrid scales.

· Hierarchical or multiscale modeling approaches are needed.
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The Multiscale Finite Element Methods
The multiscale finite element methods (MsFEMs) is a class of

FEMs for (nearly) elliptic problems with multiple scale coefficients.

Multiscale methods: Methods that incorporate fine scale

information into a set of coarse scale equations in a way which

is consistent with the local property of the differential operator.

The MsFEMs are based upon the construction of appropriate

”coarse-scale” approximation spaces that are adaptive to the

local property of the elliptic differential operator.
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Some of the features which make MsFEMs an attractive tool for

reservoir simulation are:

· The elliptic ”parallelization”: subgrid resolution at a low cost.

· The flexibility: the natural ability to handle

- heterogeneous and anisotropic materials,

- irregular and unstructured grids.

· The ideal foundation for adaptive numerical schemes for the

solution of advective transport equations.
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The Mixed Multiscale Finite Element Method
Let the reservoir domain Ω be partitioned into a family of mutually

disjoint elements K = {K} of arbitrary shape and size.

The original mixed MsFEM applies base functions ψij which satisfy

ψij = −kλ∇φij , ∇ · ψij = ±|K|−1 in Ki ∪Kj ,

and are subject to prescribed boundary conditions ψij · nij = νij on

Γij = ∂Ki ∩ ∂Kj and no-flow conditions on ∂(Ki ∪Kj)\Γij.

The boundary condition νij is chosen such that ψij ∈ H1,div(Ω).
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To formulate the corresponding mixed MsFEM we assume, for

simplicity, homogeneous boundary conditions on ∂Ω.

We then seek v ∈ V = span {ψij} and p ∈ P0(K) such that∫
Ω

(kλ)−1v · u dx−
∫

Ω

p ∇ · u dx =
∫

Ω

λg

λ
G · u dx∫

Ω

l ∇ · v dx =
∫

Ω

ql dx

for all u ∈ V and l ∈ P0(K).
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How to get subgrid resolution

· Objective: We want to be able to simulate the phase transport

at the subgrid level without violating the mass balance.

· Adjustments: We need to alter the definition of the base

functions and to add a correction term to the mixed FEM

equations in order to account for the difference between the

pressure at the wells and the average pressure in the well blocks.

· Extensions: For multi-phase flow we need to develop an efficient

way to update the base functions throughout the simulation.
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The modified base functions
The base functions ψij for the modified mixed MsFEM satisfy

∇ · ψij = ±

{
1

|K| if
∫

K
f dx = 0 ,

f∫
K f dx

if
∫

K
f dx 6= 0 ,

in Ki ∪Kj and prescribed boundary conditions on ∂(Ki ∪Kj).

The boundary conditions νij determine how well V incorporates the

local property of the differential operator. They should therefore

reflect the subgrid heterogeneity and radial flow in the well blocks.
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The modified approximation space for the pressure
To modify the approximation space for the pressure, let p̂ be a

function that vanishes outside the well blocks and satisfies∫
K

p̂ dx = 0, v̂ = −kλ∇p̂+ kλgG, ∇ · v̂ = q, v̂ · n = νK

in the well blocks for some boundary condition νK ≈ v · n on ∂K.

If v solves the mixed formulation, νij = v·n∫
Γij

v·n on Γij and

νK = v · n on ∂K, then there exist a p ∈ U = p̂+ P0(K) such that

v satisfies the mixed equations for all u ∈ V and l ∈ P0(K).
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The modified mixed multiscale FEM

Find v ∈ V = span {ψij} and p ∈ U such that∫
Ω

(kλ)−1v · u dx−
∫

Ω

p ∇ · u dx =
∫

Ω

λg

λ
G · u dx∫

Ω

l ∇ · v dx =
∫

Ω

ql dx

for all u ∈ V and l ∈ P0(K).
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Numerical Test Case (two-phase flow)
The test case is an upscaled version of the 10th SPE comparative

solution project, model 2. The model specifications are as follows.

Injector
Producer 3

Producer 4

Producer 1

Producer 2

170ft.

1200ft.

2200ft.

· 30× 110× 17 cells.

· Sim. time: 2000 days.

· No-flow BC.
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To access the accuracy of the flow scenarios induced by the mixed

MsFEM we compare the water-cut curve with the corresponding

water-cut curve induced by a reference solution.

The water-cut curves plot the fraction of water in the produced

fluid and is a more sensitive measure than the accumulated

oil-production curves which are also frequently used.

We also quantify the discrepancy between the water-cut curves

ωref
i and ωms

i for producer i with the norm measure

ems
i =

‖ω
ref
i −ωms

i ‖
L2

‖ω
ref
i ‖

L2
.
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We now consider dynamic two-phase flow and define

λw(S) = c

(
S − Srw

1− Srw − Sro

)2

and λo(S) =
(

1− S − Sro

1− Srw − Sro

)2

where Srw = Sro = 0.2 are the residual water and oil saturations.
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Concluding Remarks

· The key to the success of the multiscale finite element methods

(MsFEMs) is the selection of proper boundary conditions.

· MsFEMs may be used to accelerate simulations or give improved

accuracy at a finer scale. Their flexibility also make them

amenable for solving problems with irregular unstructured grids.

· Unexplored issues include ”adaptivity without refinement” which

can be used to model e.g., crack propagation in materials.
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