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The GeoScale Project (2004–08)

Primary objective:

Establish mathematical and numerical technology that facilitates
direct simulation on high-resolution geomodels in 3D.

Secondary objectives:

Develop better simulation methods for industry-standard
geomodels with small-scale heterogeneity, irregular grids and
multiple wells.

Simulations should run within a few hours timeframe on
standard desktop computers
Simulations should scale well with increasing computational
resources

Promote technology to industrial end-users

Establish industrial funding
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The GeoScale Project (2004–08)

Partners:

SINTEF and Univ. Bergen, Oslo, Trondheim

Funding:

1,8 million $ over 4 years from Research Council of Norway

+ 3-4 PhD grants (RCN, UoB, NTNU)

+ 2 postdoc grants (RCN, EU)

Collaboration:

Stanford, Texas A&M, ETH Zürich,

Schlumberger Moscow Research, Statoil Research Centre

Contact:

http://www.math.sintef.no/geoscale/

Knut-Andreas.Lie@sintef.no

+47 22 06 77 10 / +47 930 58 721
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Simulation on Geological Models

For various reasons, there is a need for
direct simulation on high-resolution
geomodels. This is difficult:

K spans many length scales and
has multiscale structure

maxK/minK ∼ 103–1010

Details on all scales impact flow

Gap between simulation models and geomodels:

High-resolution geomodels may have 107 − 109 cells

Conventional simulators are capable of about 105 − 106 cells
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State-of-the-art in Industry
10th SPE Comparative Solution Project
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Geomodel: 60× 220× 85 ≈ 1, 1 million grid cells

Simulation: 2000 days of production
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10th SPE Comparative Solution Project
Upscaling results reported by industry
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Developing an Alternative to Upscaling

We seek a methodology that:

gives a detailed image of the flow pattern on the fine scale,
without having to solve the full fine-scale system

is robust and flexible with respect to the coarse grid

is robust and flexible with respect to the fine grid and the
fine-grid solver

is accurate and conservative

is fast and easy to parallelise
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From Upscaling to Multiscale Methods

Standard method
Upscaled model:

⇓

⇑

Building blocks:

Two-scale method
Geomodel:

⇓
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Building blocks:

⇓
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Multiscale Mixed Finite Elements
Formulation

Mixed formulation:

Find (v, p) ∈ H1,div
0 × L2 such that∫

(λK)−1u · v dx−
∫
p∇ · u dx = 0, ∀u ∈ H1,div

0 ,∫
`∇ · v dx =

∫
q` dx, ∀` ∈ L2.

Multiscale discretisation:

Seek solutions in low-dimensional subspaces

Ums ⊂ H1,div
0 and V ∈ L2,

where local fine-scale properties are incorporated into the basis
functions.
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Multiscale Mixed Finite Elements
Grids and Basis Functions

We assume we are given a fine grid with permeability and porosity
attached to each fine-grid block.

We construct a coarse grid, and choose the discretisation spaces V
and Ums such that:

For each coarse block Ti, there is a basis function φi ∈ V .

For each coarse edge Γij , there is a basis function ψij ∈ Ums.
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Multiscale Mixed Finite Elements
Basis for the Velocity Field

For each coarse edge Γij , define a basis
function

ψij : Ti ∪ Tj → R2

with unit flux through Γij and no flow
across ∂(Ti ∪ Tj).

Homogeneous medium Heterogeneous medium

We use ψij = −λK∇φij with

∇ · ψij =

{
wi(x), for x ∈ Ti,

−wj(x), for x ∈ Tj ,

with boundary conditions ψij · n = 0 on ∂(Ti ∪ Tj).
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Multiscale Mixed Finite Elements
The Source Weights

If
∫
Ti
qdx 6= 0 (Ti contains a source), then

wi(x) =
q(x)∫

Ti
q(ξ) dξ

.

Otherwise we may choose

wi(x) =
1

|Ti|
,

or to avoid high flow through low-perm regions

wi(x) =
trace(K(x))∫

Ti
trace(K(ξ)) dξ

.

The latter is more accurate - even for strong anisotropy.

Applied Mathematics Nov 2005 13/34



Multiscale Mixed Finite Elements
The Source Weights

If
∫
Ti
qdx 6= 0 (Ti contains a source), then

wi(x) =
q(x)∫

Ti
q(ξ) dξ

.

Otherwise we may choose

wi(x) =
1

|Ti|
,

or to avoid high flow through low-perm regions

wi(x) =
trace(K(x))∫

Ti
trace(K(ξ)) dξ

.

The latter is more accurate - even for strong anisotropy.

Applied Mathematics Nov 2005 13/34



Multiscale Mixed Finite Elements
The Source Weights

If
∫
Ti
qdx 6= 0 (Ti contains a source), then

wi(x) =
q(x)∫

Ti
q(ξ) dξ

.

Otherwise we may choose

wi(x) =
1

|Ti|
,

or to avoid high flow through low-perm regions

wi(x) =
trace(K(x))∫

Ti
trace(K(ξ)) dξ

.

The latter is more accurate - even for strong anisotropy.

Applied Mathematics Nov 2005 13/34



Multiscale Mixed Finite Elements
Basis for Velocity Field, cont’d

Homogeneous coefficients and rectangular support domain:
basis function = lowest order Raviart-Thomas basis

MsMFEM = extension to cases with subscale variation in
coefficients and non-rectangular support domain

Homogeneous medium Heterogeneous medium
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Multiscale Mixed Finite Elements

Velocity basis functions ψij

⇑

Geomodel

=⇒ Coarse-grid approximation space

⇓

Coarse-scale velocity

⇓

Fine-scale velocity

For the MsMFEM the fine-scale velocity field is a linear
superposition of basis functions: v =

∑
ij v

∗
ijψij .
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Properties of the MsMFEM

Multiscale:
Incorporates small-scale effects into coarse-scale solution

Conservative:
Mass conservative on coarse grid and on the subgrid scale

Scalable:
Well suited for parallel implementation since basis functions are
processed independently

Flexible:
No restrictions on subgrids and subgrid numerical method. Few
restrictions on the shape of the coarse blocks

Fast:
The method is fast when avoiding regeneration of (most of) the
basis functions at every time step
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Advantages: Accuracy
SPE10 Benchmark (5× 11× 17 Coarse Grid)
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Advantage: Robustness
SPE10, Layer 85 (60× 220 Grid)
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Multiscale vs. Upscaling
SPE10, Layer 85 (15× 55 Grid)
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Multiscale vs. Upscaling
Saturation Errors on the Upscaled Grid
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Multiscale vs. Upscaling/Downscaling
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Multiscale vs. Upscaling
Saturation Errors on the Fine Grid
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Advantage: Computational Complexity
Order-of-Magnitude Argument

Assume:

N = n ·m grid blocks in geomodel

n coarse blocks, each containing m fine blocks

linear algebra with complexity Nα for N unknowns

Direct solution:

Nα operations for a two-point finite volume method

Multiscale solution:

dn · (2m)α + (dn)α operations using a two-point FVM for
fine-scale solution
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Computational Complexity, cont’d

Example 3D (128x128x128), α = 1.2
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Computational Complexity, cont’d

Example 3D (128x128x128), α = 1.3
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Comparison of Methods
Comments

In practice:

Assembly time may become significant when solving many
small problems since vectorization is harder.

Efficient linear solvers typically require an initial setup phase,
therefore the solution of many small systems may be more
time-consuming than anticipated.
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Computational Complexity, cont’d
Comments

Direct solution may be more efficient, so why bother with multiscale?

Full simulation: O(102) time
steps.

Basis functions need not be
recomputed

Also:

Possible to solve very large
problems

Easy parallelization
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Computational Complexity
Comparison with other methods

Example: 3D (128x128x128), α = 1.2 and k = 3

8^3 16^3 32^3 64^3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 x 108

Fine scale sol.
        ↓ 

MsFVM
MsMFEM
LGNG
ALGNG

Applied Mathematics Nov 2005 28/34



Flexibility

Multiscale mixed formulation:

coarse grid = union of cells in fine grid

Given a numerical method that
works on the fine grid, the
implementation is straightforward.

One avoids resampling when going
from fine to coarse grid, and vice
versa

Other formulations:

MsFVM and (A)LGU: based upon dual grid −→ special cases that
complicate the implementation
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Flexibility wrt. Grids

Applied Mathematics Nov 2005 30/34



Flexibility wrt. Grids
Around Flow Barriers
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Flexibility wrt. Grids
Around Wells
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Flexibility wrt. Grids
Fracture Networks

1

1
Courtesy of M. Karimi-Fard, Stanford
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Future Work

Multiscale methods

Well models (adaptive gridding, multilaterals)

More general grids (block-structured, PEBI, ..)

Compressibility, multiphase and multicomponent

Adaptivity

Fractures and faults

Applications:

Multiscale history matching

Carbonate reservoirs
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