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Scales in porous media

Porous media often have repetitive layered structures, but faults
and fractures caused by stresses in the rock disrupt flow
patterns.
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Scales in porous media, cont’d
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Scales in porous media, cont’d

The scales that impact fluid flow in oil reservoirs range from

• the micrometer scale of pores and pore channels
• via dm–m scale of well bores and laminae sediments
• to sedimentary structures that stretch across entire

reservoirs.
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Reservoir simulation

Two-phase flow, modelled by continuity equation for each phase
and Darcy’s law

φ∂tSi + ∇ · vi = qi, vi = −kλi∇pi

Model reformulation: pressure and saturation equation

−∇
(

kλ(S)∇p) = q, v = −kλ(S)∇p,

φ∂tS + ∇ · (vf(S)) = 0

Need for fast (desktop) simulations for decision support:

predictions of production, history matching, ranking,
uncertainty, process optimisation,...
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Geo(logical) model

Geomodels consist of rock parame-
ters k and φ.

• k spans many length scales
and has multiscale structure,

• details on all scales impact
flow

Gap between simulation and geomodels:
• High-resolution geomodels may have 107 − 109 cells
• Conventional (FV/FD) simulators are capable of about

105 − 106 cells

Traditional solution: upscaling
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Upscaling the pressure equation

Assume that u satisfies the ellip-
tic PDE:

−∇
(

a(x)∇u
)

= f.

Upscaling amounts to finding a
new field a∗(x̄) on a coarser grid
such that

−∇
(

a∗(x̄)∇u∗
)

= f̄ ,

u∗ ∼ ū, q∗ ∼ q̄ .
10 20 30 40 50 60

20

40

60

80

100

120

140

160

180

200

220

2 4 6 8 10

2

4

6

8

10

12

14

16

18

20

22

Here the overbar denotes averaged quantities on a coarse grid.
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Upscaling permeability

How do we represent fine-scale heterogeneities on a coarse
scale?

• Arithmetic, geometric, harmonic, or power averaging
( 1
|V |

∫

V a(x)
p dx)1/p

• Equivalent permeabilities ( a∗
xx = −QxLx/∆Px )
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Multiscale simulation rather than upscaling?
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permeability reference solution upscaled solution

• Upscaling the geomodel is not always the answer
− Loss of details and lack of robustness
− Bottleneck in the workflow

• Need for fine-scale computations?
• In the future: need for multiphysics on multiple scales?
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Mixed formulation of the pressure equation:

Find (v, p) ∈ H
1,div
0 × L2 such that

∫

(λK)−1u · vdx−

∫

p∇ · udx = 0, ∀u ∈ H
1,div
0 ,

∫

l∇ · vdx =

∫

qldx, ∀l ∈ L2.

Multiscale discretisation: Seek solutions in low-dimensional
subspaces

Ums
⊂ H

1,div
0 and V ∈ L2,

where local fine scale properties are incorporated into the basis
functions.
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Multiscale mixed finite element method
Velocity basis functions

⇑

Geomodel

=⇒ Coarse grid approximation space
⇓

Coarse scale velocity

⇓

Fine scale velocity

For the MsMFEM the fine scale velocity field is a linear
superposition of the base functions: v =

∑

ij v
∗
ijψij .
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Grids and basis functions

We assume we are given a fine grid with permeability and
porosity attached to each fine grid block.

We construct a coarse grid, and choose the discretisation
spaces V and Ums such that:

• For each coarse block Ti, there is a basis function φi ∈ V .
• For each coarse edge Γij , there is a basis function
ψij ∈ Ums.
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Grids and basis functions

We assume we are given a fine grid with permeability and
porosity attached to each fine grid block.

Ti
Tj

We construct a coarse grid, and choose the discretisation
spaces V and Ums such that:

• For each coarse block Ti, there is a basis function φi ∈ V .
• For each coarse edge Γij , there is a basis function
ψij ∈ Ums.
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Basis functions for the velocity field

For each coarse edge Γij define a
basis function

ψij : Ti ∪ Tj → R2

with unit flux through Γij , and no flow
across ∂(Ti ∪ Tj).

We use ψij = −λK∇φij with

∇ · ψij =











wij(x), for x ∈ Ti,

−wij(x), for x ∈ Tj ,

0, otherwise,

with boundary conditions ψij · n = 0 on ∂(Ti ∪ Tj).
Global boundary conditions: specify v|Γij

if known initially
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MsMFEM velocity basis

Homogeneous coefficients and rectangular support domain:
basis function = lowest order Raviart-Thomas basis

MsMFEM = extension to cases with subscale variation in
coefficients and non-rectangular support domain

Homogeneous medium Heterogeneous medium

x-component of the 2D basis function
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MsMFEM properties

Multiscale:
Incorporates small-scale effects into coarse-scale solution

Conservative:
Mass conservative on a subgrid scale

Scalable:
Well suited for parallel implementation since basis functions are
processed independently

Flexible:
No restrictions on subgrids and subgrid numerical method. Few
restrictions on the shape of the coarse blocks

Fast:
The method is fast when avoiding regeneration of (most of) the
basis functions at every time step
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Numerical examples: SPE 10th CSP

Industrial benchmark for upscaling:

Producer A

Producer B

Producer C

Producer D

Injector

Tarb
ert
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60 × 220 × 85 grid, λw ∝ S2, λo ∝ (1 − S)2, µo = 3.0 cP, µw = 0.3 cP

2000 days of production at bhp 4000 psi. Injection: 5000 bbl/day.

In the following we consider both 2D subsets and the full 3D
case.
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2D section from Upper Ness
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permeability reference solution MsMFEM + SL
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upscaled perm. upscaled solution nested gridding

Nested gridding: upscale (kλ), solve for pressure and then subgrid problem for

velocities, i.e., a method with subscale resolution but without coupling between the fine

and coarse scale
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The SPE benchmark results

Producer A:
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MsMFEM results (coarse grid: 5 x 11 x 17)
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Robust wrt coarse-grid size
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Resolves strongly heterogeneous structures

Logarithm of kx

kred = 104

kyellow = 1

kblue = 10−8

Coarse grid = 8×8.

Reference MsFVM

MsMFEM LGU-NG
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Grid refinement is straightforward
Reference Uniform coarse grid Non-uniform grid Barrier grid
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Irregular and ustructured grids
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Irregular and ustructured grids, cont’d
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