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What do we propose, and why?

Objective:

Accurate and efficient numerical solutions to realistic first-contact
miscible displacements in porous media

Key technologies:

Analytical solution to the Riemann problem

A front-tracking algorithm to solve general 1D Cauchy
problems

A streamline simulator that decouples the 3D transport
equations into a set of 1D problems along streamlines
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1 Analytical Solution
Mathematical model of FCM displacements
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Admissible wave structure
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2 Numerical Simulation
The front-tracking algorithm
One-dimensional examples
Three-dimensional streamline simulations
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Mathematical model of FCM displacements

Assumptions:

Three components: water (w), oil (o) and solvent (h)

Two phases: aqueous (w) and hydrocarbon (h)

Perfectly miscible hydrocarbons, immiscible water

Incompressible fluids and no volume change in mixing

Rigid medium, neglible gravity and capillary effects

Conservation laws:

∂tSw + ∂xvw = 0

∂t

(
(1− Sw)(1− χg)

)
+ ∂x

(
(1− χg)vh

)
= 0

∂t

(
(1− Sw)χg

)
+ ∂x

(
χgvh

)
= 0

Sα: saturation of phase α, χg: mass fraction
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Mathematical model, cont’d

2× 2 system of conservation laws

∂tS + ∂xf = 0

∂tC + ∂x

(1− f

1− S
C

)
= 0

where

S ≡ Sw : water saturation

C ≡ (1− Sw)χg : solvent concentration

f =

krw(S)
µw

krw(S)
µw

+ krh(S)
µh(χ)

= f(S, C)

µh =
[1− χ

µ
1/4
o

+
χ

µ
1/4
g

]−4

Relative permeability and
fractional flow curves
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Mathematical character

Mathematical character determined by Jacobian matrix: f ′(S, C)
Two families: S–family (νs, rs) and C–family (νc, rc)

The system is hyperbolic but not strictly hyperbolic

hyperbolic: real eigenvalues,
Jacobi diagonalizable

strictly hyperbolic: distinct
eigenvalues

A transition curve divides the solution
space in two regions

Left: L: νs < νc

Right: R: νs > νc
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The Riemann problem

Find the weak solution of

∂tu + ∂xf(u) = 0,

u(x, 0) =

{
ul, x < 0

ur, x ≥ 0

Self-similar solution

u(x, t) = U(ζ), ζ = x/t

u
l

u
r

Similar problem: polymer flooding, previously analysed by

Isaacson (1980)

Johansen and Winther (1988, 1989)
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Integral curves

A smooth solution must
satisfy

F ′(U)U ′ = ζU ′

↗ ↖
Eigenvalue Eigenvector

Two families of solutions:

S–family: C
1−S = const

(tie-line)

C–family: νc = const
(nontie-line)
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Shock curves

Discontinuous solutions must satisfy the Rankine–Hugoniot
conditions:

f(ul)− f(ur) = σ · (ul − ur)

Two families of solutions (Hugoniot loci):

In general, shock and integral curves do not coincide, but they
have second-order tangency

For the solvent system, shock and integral curves coincide

S–family: classical Buckley–Leverett wave for fixed solvent
mass fraction χ (tie-line)

C–family: contact discontinuity of constant νc (nontie-line)
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Admissible wave sequences

For a strictly hyperbolic system, the solution comprises at
most two waves

ul
W1−→ um

W2−→ ur

For a nonstrictly hyperbolic system, the solution may involve
more than two waves

ul
W1−→ u(1)

m
Wt−→ u(2)

m
W2−→ ur

↖
transitional wave
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Riemann solution

The global solution is obtained by joining admissible waves

There are two cases (and three regions bounded by transitional
curve, tie-line and nontie-line associated with each ul):

Recall: L: νs < νc R: νs > νc
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Catalogue of solutions (1/2)

The case ul ∈ L

ur ∈ L1: ul
S−→ um

C−→ ur

ur ∈ L2: ul
S−→ u

(1)
m

C−→ u
(2)
m

S−→ ur

ur ∈ L3: ul
S−→ u

(1)
m

C−→ u
(2)
m

S−→ ur
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Catalogue of solutions (2/2)

The case ul ∈ R

ur ∈ R1: ul
S−→ um

C−→ ur

ur ∈ R2: ul
C−→ um

S−→ ur

ur ∈ R3: ul
S−→ u

(1)
m

C−→ u
(2)
m

S−→ ur
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1D numerical examples
A Riemann problem with a transitional wave

Example (Solution of type R3)

Slow convergence of finite-difference solutions for the transitional wave.
Scheme: single-point upwind, Crank-Nicolson with σ ≈ 2
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1D numerical examples
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General 1D Cauchy problems

Solution to the Riemann problem is insufficient if

Initial conditions are different from constant

Variable injection saturations (e.g., WAG)

Front-tracking method:

Piecewise constant approximation of solution

Sequence of Riemann problems

Riemann solutions discretised as step functions
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Front-tracking algorithm
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Front-tracking algorithm

Applied Mathematics SIAM GS05 16/29



Front-tracking algorithm
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Front-tracking algorithm
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Front-tracking algorithm
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1D numerical examples
Front-tracking approximation of a Riemann problem

Example (ul
S−→ u

(1)
m

C−→ u
(2)
m

S−→ ur)
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1D numerical examples
Linear reservoir

Example

Initially, reservoir filled with 70% oil and 30% water

Four different injection strategies:

continuous water injection
continuous gas injection
alternating solvent and water injection
alternating water and solvent injection

Front-tracking solution with step size δu = 0.01 for
rarefactions
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1D numerical examples
Linear reservoir

Example (water injection)
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1D numerical examples
Linear reservoir

Example (Solvent injection)
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1D numerical examples
Linear reservoir

Example (alternating solvent and water injection)
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1D numerical examples
Linear reservoir

Example (alternating water and solvent injection)
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In 3D: streamline simulation
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Streamline step

Saturation at time n

Initial streamline saturations Front−tracking solution Final streamline saturations

Saturation at time n+1
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3D numerical simulations
Tarbert formation from 10th SPE Comparative Solution Project

Highly heterogeneous, shallow-marine formation

Six orders of magnitude permeability variations

Five vertical wells (1 injector, 4 producers)

Three different injection schemes

1 continuous water injection

2 continuous gas injection

3 water-alternating gas injection
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3D numerical simulations
Comparison with Eclipse 100

Example (Oil production)
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3D numerical simulations
Comparison with Eclipse 100

Example (Gas production)
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3D numerical simulations
Comparison with Eclipse 100

Example (Water production)
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Conclusions

Efficient computational framework for first-contact miscible gas
injection processes

Analytical Riemann solver (6 solution types)

Front-tracking algorithm

exact representation of discontinuities
unconditionally stable
grid-independent

Streamline simulation

efficient
accurate? (work in progress)

Extensions: viscous fingering (Blunt & Juanes, 2005)
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