Comparison of Three Multiscale Methods for Two-Phase Flow in Heterogeneous Porous Media

J.E. Aarnes, V. Kippe, S. Krogstad, and Knut-Andreas Lie

SINTEF ICT, Dept. Applied Mathematics

SIAM Conference on Mathematical and Computational Issues in the Geosciences, June 7–10, Avignon, France

SIAM GS05 < □ > 1/27

Outline

Introduction – Three Multiscale Methods

- Local-global upscaling and nested gridding
- Multiscale mixed finite elements.
- Multiscale finite volumes

2 Comparison of Methods

- Computational complexity
- A fluvial reservoir (SPE 10)
- Anisotropic medium / high aspect ratios
- Global boundary conditions for MsFVM and MsMFEM
- Shale barriers and high-permeable channels

3 Conclusion

Fractional formulation (no gravity or capillary forces):

$$egin{aligned} -
abla ig(k\lambda(S)
abla p) &= q, \qquad v = -k\lambda(S)
abla p, \ \phi \partial_t S +
abla \cdot (vf(S)) &= 0 \end{aligned}$$

Numerical solution by operator splitting (each equation by a specialised numerical method):

pressure: hierarchical multiscale method saturation: finite volumes or streamlines

Iterated implicit (+ domain decomposition) converges within a few iterations and is therefore an alternative to fully implicit!

Small scale variations in the permeability can have a strong impact on large scale flow and should be resolved properly.

- the pressure may be well resolved on a coarse grid
- the fluid transport should be solved on the finest scale possible

Multiscale method – accurate velocity fields on the fine scale:

- Local-global upscaling and nested gridding (LGU-NG)
 - iterative global upscaling method
 - reconstructed fine-scale velocity
- Multiscale finite volume method (MsFVM)
 - fine-scale pressure, reconstructed fine-scale velocity
- Mixed multiscale finite element method (MsMFEM)
 - fine-scale velocity, coarse-scale pressure

SIAM GS05 < D > 4/27

Multiscale Simulation

Applied Mathematics

SIAM GS05 < □ > 5/27

Local-Global Upscaling and Nested Gridding $_{\rm Three\ building\ blocks}$

1. Upscale transmissibility:

$$\begin{aligned} -\nabla\cdot k\nabla p &= 0 \quad \text{in} \quad \Omega_{lj} \\ p &= Ip^* \quad \text{in} \quad \partial\Omega_{lj} \end{aligned}$$

$$T_{lj}^* = \frac{\int_{\partial K_l \cap \partial K_j} v \cdot n_{lj} \, ds}{\int_{K_l} p \, dx - \int_{K_j} p \, dx}$$

() SINTEF

2. Solve coarse-scale problem:

$$\sum_{j} T_{lj}^*(p_l - p_j) = \int_{K_l} q \, dx \quad \forall K_l$$

3. Construct fine-scale velocity:

$$v = -k\nabla p, \quad \nabla \cdot v = q \quad \text{in } K_l$$
$$v \cdot n = \frac{T_{ki}(v^* \cdot n_{lj})}{\sum_{\gamma_{ki} \subset \Gamma_{lj}} T_{ki}} \quad \text{on } \partial K_l$$

(Here i runs over the underlying fine grid)

Applied Mathematics

SIAM GS05 < □ > 6/27

 $\label{eq:Global upscaling} \begin{array}{l} {\sf Global upscaling + fine-grid reconstruction = a `multiscale'} \\ {\sf method:} \end{array}$

- Compute initial T_{lj}^* 's using standard upscaling
- Solve global coarse-scale pressure equation with T_{li}^* 's
- Until convergence (in v and p)
 - Interpolate between pressures to get BC for local flow problems
 - Compute new T_{lj}^* 's from local flow problems
 - Solve global coarse-scale pressure equation with new T_{lj}^* 's
- Solve coarse-scale problem (wells and BC) with upscaled T_{lj}^* 's
- Reconstruct fine-scale velocity field with nested gridding

Mixed formulation:

Find $(v,p) \in H_0^{1,\operatorname{div}} \times L^2$ such that

$$\int (\lambda K)^{-1} u \cdot v \, dx - \int p \nabla \cdot u \, dx = 0, \qquad \forall u \in H_0^{1, \text{div}},$$
$$\int \ell \nabla \cdot v \, dx = \int q \ell \, dx, \quad \forall \ell \in L^2.$$

Multiscale discretisation:

Seek solutions in low-dimensional subspaces

$$U^{ms} \subset H^{1,\operatorname{div}}_{\mathbf{0}}$$
 and $V \in L^2$,

where local fine-scale properties are incorporated into the basis functions.

We construct a *coarse* grid, and choose the discretisation spaces V and U^{ms} such that:

- For each coarse block T_i , there is a basis function $\phi_i \in V$.
- For each coarse edge Γ_{ij} , there is a basis function $\psi_{ij} \in U^{ms}$.

SIAM GS05 < □ > 9/27

We construct a *coarse* grid, and choose the discretisation spaces V and U^{ms} such that:

- For each coarse block T_i , there is a basis function $\phi_i \in V$.
- For each coarse edge Γ_{ij} , there is a basis function $\psi_{ij} \in U^{ms}$.

We construct a *coarse* grid, and choose the discretisation spaces V and U^{ms} such that:

- For each coarse block T_i , there is a basis function $\phi_i \in V$.
- For each coarse edge Γ_{ij} , there is a basis function $\psi_{ij} \in U^{ms}$.

We construct a *coarse* grid, and choose the discretisation spaces V and U^{ms} such that:

- For each coarse block T_i , there is a basis function $\phi_i \in V$.
- For each coarse edge Γ_{ij} , there is a basis function $\psi_{ij} \in U^{ms}$.

For each coarse edge Γ_{ij} define a basis function

$$\psi_{ij}: T_i \cup T_j \to R^2$$

with unit flux through Γ_{ij} and no flow across $\partial(T_i \cup T_j)$.

We use $\psi_{ij} = -\lambda K \nabla \phi_{ij}$ with

$$\nabla \cdot \psi_{ij} = \begin{cases} w_i(x), & \text{ for } x \in T_i, \\ -w_j(x), & \text{ for } x \in T_j, \end{cases}$$

with boundary conditions $\psi_{ij} \cdot n = 0$ on $\partial(T_i \cup T_j)$.

SIAM GS05 < □ > 10/27

Multiscale Mixed Finite Elements

For the MsMFEM the fine-scale velocity field is a linear superposition of basis functions: $v = \sum_{ij} v_{ij}^* \psi_{ij}$.

() SINTEF

Multiscale Finite-Volume Method

- Construct basis functions for pressure: $\phi_j = \phi(K_j)$.
- Compute flux contributions: $f_{j,l}^* = -\int_{\partial K_l} k \nabla \phi_j \cdot n_l \, ds.$
- Solve coarse-scale problem:

$$\sum_j p_j^* f_{j,l}^* = \int_{K_l} q \, dx$$

The idea is to express the pressure as a linear superposition of the base functions: $p^* = \sum_j p_j^* \phi_j$.

 Reconstruct fine-grid velocity field from mass-conservative field on coarse grid:

$$v = -k\nabla p, \quad \nabla \cdot v = q, \quad \text{in } K_l$$
$$v \cdot n = -k\nabla p^* \cdot n_l \quad \text{on } \partial K_l.$$

Multiscale Finite-Volume Method

() SINTEF

Applied Mathematics

SIAM GS05 < □ > 13/27

Efficient linear algebra is crucial for effcient pressure solution:

- The finite volume formulation, used by both MsFVM and LGU-NG results in Symmetric Positive Definite (SPD) linear systems.
- The mixed finite element formulation yields a saddle point problem (indefinite system), which is generally thought to be harder to solve.
- However, the MsMFEM can be reformulated as an equivalent Mixed Hybrid FEM[†] that results in a SPD system.

[†] Hybrid MFEM: lifting the restriction of continuous edge velocities and reintroducing continuity by applying "Lagrange multipliers" (edge pressures)

Assumptions

- Dominating factor is solution of linear systems, i.e., we ignore the time associated with assembly and determination of boundary conditions for local problems.
- Time to solve linear system of size N:

 $t(N) \sim N^{\alpha}$, $\alpha \leq 2$ for multigrid, etc

Example: Cartesian D-dimensional grid, N_c coarse blocks, each with N_s fine blocks, m iterations in LGU-NG.

Method	Local	Global
MsFVM	$(2^D+1)\cdot N_c\cdot N_s^lpha+$	$1 \cdot N_c^{lpha}$
MsMFEM	$D \cdot 2^{\alpha} \cdot N_c \cdot N_s^{\alpha} +$	$D^{\alpha} \cdot N_c^{\alpha}$
LGU-NG	$(D+1+2^{D\cdotlpha}m)\cdot N_c\cdot N_s^{lpha}+$	$D \cdot m \cdot N_c^{\alpha}$

Typical complexity as a function of coarse grid size:

SIAM GS05 < D > 16/27

Example: 3D (128x128x128), $\alpha = 1.5$ and m = 3

SIAM GS05 < □ > 17/27

In practice[†]:

- Assembly time may become significant when solving many small problems since vectorization is harder.
- Efficient linear solvers typically require an initial setup phase, therefore the solution of many small systems may be more time-consuming than anticipated.

Note

The multiscale methods are not necessarily more efficient than direct solution of a single fine scale problem, but they allow solution of bigger problems, and for non-linear problems where local properties need to be recomputed only in limited regions they have a significant performance advantage.

[†] At least for our fairly naive implementations.

In our experience:

- The really difficult part is the well model!
- MsFVM and LGU-NG: based upon *dual grid*
 - \longrightarrow special cases (along global boundaries and internal structures) that complicate the implementation
- MsMFEM: coarse grid = union of cells in fine grid
 → problem with dual grid avoided
 Given a numerical method that works on the fine grid the
 implementation is straightforward. (Very few lines of
 MATLAB code for simple grids!)

Example (Bottom layer from SPE10 comparative solution project)

Velocity fields may differ both locally and globally, but all methods produce qualitatively similar saturation profiles

SIAM GS05 < D > 20/27

Fluvial Reservoirs (cont'd)

Error in saturation field as function of coarse grid size:

SIAM GS05 < D > 21/27

Anisotropic Medium / High Aspect Ratios

Example

SIAM GS05 < D > 22/27

Improvements for MsFVM

Instability issues for the MsFVM are reduced or eliminated by using global boundary conditions or by replacing the reconstruction procedure with nested gridding

SIAM GS05 < D > 23/27

Global Boundary Conditions

An initial global fine scale pressure solution p_0 can be exploited to improve accuracy of two-phase flow simulations

SINTEF

Applied Mathematics

Shale Barriers and High-Permeable Channels

Example

Shale Barriers and High-Permeable Channels (cont'd)

Error in saturation field as function of coarse grid size:

MsMFEM: almost perfect solution by adaptive grid or global boundary conditions

```
() SINTEF
```

Applied Mathematics

SIAM GS05 < □ > 26/27

- All three reasonably accurate on typical problems
- LGU-NG least efficient, convergence problems on barrier case, no apparent way of utilizing a fine-grid solution
- MsFVM most accurate on barrier case, completely off on the anisotropic case. Problem fixed by NG, but still less accurate than MsMFEM
- MsMFEM simpler to implement, no particular weakness (except possibly barrier case, as discussed by Krogstad), generally best of the three for random media.
- Global BC give nearly perfect results for MsFVM and MsMFEM

