Multiscale Methods for Porous Media Flow

Knut–Andreas Lie Vegard Kippe, Stein Krogstad, Jørg E. Aarnes

SINTEF ICT, Dept. Applied Mathematics

NSCM-18, November 28-29, 2005

Applied Mathematics

NSCM-18 < □ > 1/36

Outline

1 Introduction to Reservoir Simulation

- Flow in Porous Media
- Upscaling
- 2 Multiscale Methods
 - From Upscaling to Multiscale Methods
 - Multiscale Mixed Finite Elements

3 Numerical Examples

- Multiscale Methods versus Upscaling
- Computational Complexity
- Strongly Heterogeneous Structures
- Flexibility wrt Grids

4 Concluding Remarks

Two-Phase Flow in Porous Media

Pressure equation:

$$-
abla(\mathbf{K}(\mathbf{x})\lambda(S)
abla p) = q, \qquad \mathbf{v} = -\mathbf{K}(\mathbf{x})\lambda(S)
abla p,$$

Fluid transport:

$$\phi \partial_t S + \nabla \cdot (\mathbf{v} f(S)) = \varepsilon \nabla (\mathbf{D}(S, \mathbf{x}) \nabla S)$$

Porous sandstones often have repetitive layered structures, but faults and fractures caused by stresses in the rock disrupt flow patterns¹:

NSCM-18 < □ >

4/36

¹Photo: Silje Søren Berg, CIPR, Univ. Bergen

The scales that impact fluid flow in oil reservoirs range from

- the micrometer scale of pores and pore channels
- via dm-m scale of well bores and laminae sediments
- to sedimentary structures that stretch across entire reservoirs.

NSCM-18 < □ > 5/36

Geomodels consist of geometry and rock parameters (permeability \mathbf{K} and porosity ϕ):

• K spans many length scales and has multiscale structure

 $\mathsf{max}\,\mathbf{K}/\,\mathsf{min}\,\mathbf{K}\sim 10^3\text{--}10^{10}$

• Details on all scales impact flow

NSCM-18 < □ > 6/36

Geomodels consist of geometry and rock parameters (permeability \mathbf{K} and porosity ϕ):

• K spans many length scales and has multiscale structure

 $\mathsf{max}\,\mathbf{K}/\,\mathsf{min}\,\mathbf{K}\sim 10^3\text{--}10^{10}$

• Details on all scales impact flow

Gap between simulation models and geomodels:

- High-resolution geomodels may have $10^7 10^9$ cells
- $\bullet\,$ Conventional simulators are capable of about $10^5-10^6\,$ cells

Traditional solution: upscaling of parameters

Upscaling Geomodels

Upscaling a geomodel to a coarser simulation grid:

- Combine cells to derive coarse grid
- Derive new efficient cell properties
- Fewer cells \Rightarrow faster simulation/less storage

However:

 Robust upscaling can be difficult and work-intensive

NSCM-18 < □ > 7/36

Assume that u satisfies the elliptic PDE:

$$-\nabla(a(x)\nabla u) = f.$$

Upscaling amounts to finding a new field $a^*(\bar{x})$ on a coarser grid such that

$$-\nabla (a^*(\bar{x})\nabla u^*) = \bar{f},$$

 $u^* \sim \bar{u}, \qquad q^* \sim \bar{q} \; .$

Here the overbar denotes averaged quantities on a coarse grid.

How do we represent fine-scale heterogeneities on a coarse scale?

- Arithmetic, geometric, harmonic, or power averaging $\left(\frac{1}{|V|}\int_V a(x)^p \ dx\right)^{1/p}$
- Equivalent permeabilities ($a_{xx}^* = -Q_x L_x/\Delta P_x$)

State-of-the-art in Industry 10th SPE Comparative Solution Project

- Geomodel: $60 \times 220 \times 85 \approx 1,1$ million grid cells
- Simulation: 2000 days of production

NSCM-18 < □ > 10/36

10th SPE Comparative Solution Project

Upscaling results reported by industry

NSCM-18 < □ > 11/36

Observation:

• Variations on small scale can have large impact on large-scale flow patterns

We therefore seek a methodology which:

- gives a detailed image of the flow pattern on the fine scale, without having to solve the full fine-scale system
- is robust and flexible with respect to the coarse grid
- is robust and flexible with respect to the fine grid and the fine-grid solver
- is accurate and conservative
- is fast and easy to parallelise

NSCM-18 < □ > 12/36

Standard method

Upscaled model:

NSCM-18 < D > 13/36

Standard method

Upscaled model:

₩

Building blocks:

Λ

NSCM-18 < □ > 13/36

Standard method

Upscaled model:

Building blocks:

NSCM-18 < □ > 13/36

Standard method

Upscaled model:

Building blocks:

Two-scale method Geomodel:

NSCM-18 < □ > 13/36

Standard method

Upscaled model:

Building blocks:

Two-scale method Geomodel:

\Downarrow

Building blocks:

-	-	-		
_	_	_	_	_
	_			
-	-			
-	-	-		
-	-	-		
1				

NSCM-18 < D > 13/36

Standard method

Upscaled model:

Building blocks:

Two-scale method Geomodel:

Building blocks:

Standard method

Upscaled model:

Building blocks:

Two-scale method Geomodel:

Standard method

Upscaled model:

Building blocks:

() SINTEF

Two-scale method Geomodel:

Building blocks:

NSCM-18 < □ >

From Upscaling to Multiscale Methods, cont'd

- Global upscaling methods (Nielsen, Holden, Tveito)
 - global boundary conditions, minimization of error functional
- Local-global upscaling methods (Durlofsky et al.)
 - global boundary conditions + iterative improvement
- Solution (Gautier, Blunt & Christie)
 - Upscaling + local reconstruction of fine-scale velocities
- Multiscale finite elements
 - basis functions with subscale resolution
 - finite elements (Hou & Wu) pressure
 - mixed elements (Chen & Hou; Aarnes et al.) velocity
 - finite volumes (Jenny et al.) pressure
- Variatonal multiscale methods (Hughes et al.; Arbogast; Larson & Målqvist; Juanes)
 - direct decomposition of the solution, $V = V_c \oplus V_f$

NSCM-18 < D > 14/36

Mixed formulation:

Find $(v, p) \in H_0^{1, \operatorname{div}} \times L^2$ such that

$$\int (\lambda K)^{-1} u \cdot v \, dx - \int p \nabla \cdot u \, dx = 0, \qquad \forall u \in H_0^{1, \text{div}},$$
$$\int \ell \nabla \cdot v \, dx = \int q \ell \, dx, \quad \forall \ell \in L^2.$$

Multiscale discretisation:

Seek solutions in low-dimensional subspaces

$$U^{ms} \subset H_0^{1,\operatorname{div}} \text{ and } V \in L^2,$$

where local fine-scale properties are incorporated into the basis functions.

NSCM-18 < □ > 15/36

NSCM-18 < □ > 16/36

We construct a *coarse* grid, and choose the discretisation spaces V and U^{ms} such that:

We construct a *coarse* grid, and choose the discretisation spaces V and U^{ms} such that:

• For each coarse block T_i , there is a basis function $\phi_i \in V$.

NSCM-18 < □ > 16/36

We construct a *coarse* grid, and choose the discretisation spaces V and U^{ms} such that:

- For each coarse block T_i , there is a basis function $\phi_i \in V$.
- For each coarse edge Γ_{ij} , there is a basis function $\psi_{ij} \in U^{ms}$.

NSCM-18 < □ > 16/36

For each coarse edge Γ_{ij} , define a basis function

$$\psi_{ij}: T_i \cup T_j \to R^2$$

with unit flux through Γ_{ij} and no flow across $\partial(T_i \cup T_j)$.

$$\nabla \cdot \psi_{ij} = \begin{cases} w_i(x), & \text{ for } x \in T_i, \\ -w_j(x), & \text{ for } x \in T_j, \end{cases}$$

with boundary conditions $\psi_{ij} \cdot n = 0$ on $\partial(T_i \cup T_j)$.

Multiscale Mixed Finite Elements Basis for Velocity Field, cont'd

Homogeneous coefficients and rectangular support domain: basis function = lowest order Raviart-Thomas basis

MsMFEM = extension to cases with subscale variation in coefficients and non-rectangular support domain

For the MsMFEM the fine-scale velocity field is a linear superposition of basis functions: $v = \sum_{ij} v_{ij}^* \psi_{ij}$.

SINTEF

NSCM-18 < □ > 19/36

Multiscale:

Incorporates small-scale effects into coarse-scale solution

Conservative:

Mass conservative on coarse grid and on the subgrid scale

Scalable:

Well suited for parallel implementation since basis functions are processed independently

Flexible:

No restrictions on subgrids and subgrid numerical method. Few restrictions on the shape of the coarse blocks

Fast:

The method is fast when avoiding regeneration of (most of) the basis functions at every time step

Examples: Accuracy SPE10 Revisited ($5 \times 11 \times 17$ Coarse Grid)

Nested gridding: upscaling + downscaling

() SINTEF

NSCM-18 < □ > 21/36

Multiscale vs. Upscaling SPE10, Layer 85 (15×55 Grid)

NSCM-18 < □ > 22/36

Multiscale vs. Upscaling Saturation Errors on the Upscaled Grid

() SINTEF

Applied Mathematics

NSCM-18 < □ > 23/36

Multiscale vs. Upscaling/Downscaling

NSCM-18 < □ > 24/36

Multiscale vs. Upscaling Saturation Errors on the Fine Grid

() SINTEF

Applied Mathematics

NSCM-18 < □ > 25/36

Robustness SPE10, Layer 85 (60 × 220 Grid)

Logarithm of horizontal permeability

Coarse grid (12 x 44) saturation profile

Coarse grid (6 x 22) saturation profile

Coarse grid (3 x 11) saturation profile

Reference saturation profile

MsMFEM saturation profile

MsMFEM saturation profile

MsMFEM saturation profile

NSCM-18 < □ > 26/36

<u>Computational</u> Complexity Order of Magnitude Argument

Example: 3D (128x128x128), $\alpha = 1.2$ and m = 3

NSCM-18 < □ > 27/36

Computational Complexity Comments

Direct solution more efficient, so why bother with multiscale?

- Full simulation: $\mathcal{O}(10^2)$ steps.
- Basis functions need not be recomputed

Also:

- Possible to solve very large problems
- Easy parallelization

NSCM-18 < □ > 28/36

Strongly Heterogeneous Structures

Logarithm of k_x

() SINTEF

Problem: Traversing Barriers

Problems occur when a basis function forces flow through a barrier:

Potential problem

No problem

NSCM-18 < □ > 30/36

Problem: Traversing Barriers

Problems occur when a basis function forces flow through a barrier:

Potential problem

Problem-cases can be detected automatically through the indicator

$$v_{ij} = \psi_{ij} \cdot (\lambda K)^{-1} \psi_{ij}.$$

If $v_{ij}(x) > C$ for some $x \in T_i$, then split T_i , and generate basis functions for the new faces.

SINTEF

NSCM-18 <
>
30/36

Barrier Case, revisited

100

NSCM-18 < □ > 31/36

Flexibility wrt. Grids

NSCM-18 < □ > 32/36

Flexibility wrt. Grids Around Flow Barriers

NSCM-18 < □ >

33/36

() SINTEF

Flexibility wrt. Grids Around Wells

NSCM-18 < □ > 34/36

Flexibility wrt. Grids Fracture Networks

²Courtesy of M. Karimi-Fard, Stanford

NSCM-18 < □ > 35/36

Upscaling is *and will* be an important part of the reservoir modelling workflow

Multiscale methods may replace upscaling/downscaling for simulation purposes, because they:

- give better resolution
- are more flexible
- may be faster

However, a lot of (exciting) research needs to be done ..

