Outline Motivation

A Discontinuous Galerkin Method for Computing Flow in Porous Media

J. R. Natvig[†] K.-A. Lie[†] B. Eikemo[‡] I. Berre[‡] H. K. Dahle[‡] G. T. Eigestad[‡]

[†]SINTEF, Department of Applied Mathematics

[‡]Department of Mathematics, University of Bergen

Stuttgart, November 24 2005

Outline

The Time-Of-Flight Equation

- 2 The Discontinuous Galerkin Method
 - The Discontinuous Galerkin Space Discretisation
 - Reordering
 - Numerical Results

3 Tracer Flow

- Stationary Distribution of Tracers
- Numerical results
- 4 Multiphase Flow
 - Implicit DG Solution
 - Numerical Results

* E > * E >

2

Aim: Construct a fast method to compute flow in porous media Method: Discontinuous Galerkin Method (DGM)

- reservoir flow
- groundwater flow

(E) < E)</p>

The Time-Of-Flight Equation

Fluids flow with velocity v obtained from Darcy's law,

$$\mathbf{v} = -rac{\mathbf{K}}{\mu}
abla \mathbf{p}$$

 The time-of-flight of a particle along a streamline, \U2:

$$T(x) = \int_{\Psi} \frac{ds}{|\mathbf{v}(\mathbf{x}(s))|}$$

• The time-of-flight is the solution of a boundary value problem:

The Time-Of-Flight Equation

Fluids flow with velocity v obtained from Darcy's law,

$$\mathbf{v} = -\frac{\mathbf{K}}{\mu}
abla \mathbf{p}$$

 The time-of-flight of a particle along a streamline, Ψ:

$$T(x) = \int_{\Psi} \frac{ds}{|\mathbf{v}(\mathbf{x}(s))|}$$

• The time-of-flight is the solution of a boundary value problem:

The Time-Of-Flight Equation

Fluids flow with velocity v obtained from Darcy's law,

$$\mathbf{v} = -rac{\mathbf{K}}{\mu}
abla \mathbf{p}$$

 The time-of-flight of a particle along a streamline, Ψ:

$$T(\mathbf{x}) = \int_{\Psi} \frac{ds}{|\mathbf{v}(\mathbf{x}(s))|}$$

The time-of-flight is the solution of a boundary value problem:

$$\mathbf{v}(\mathbf{x}) \cdot \nabla T = 1, \quad T = 0 \text{ on } \Gamma^+$$

The Discontinuous Galerkin Space Discretisation Reordering Numerical Results

Solution Space

• Space for approximate solution T_h :

$$V_h^{(n)} = \{ \varphi : \varphi |_{\mathcal{K}} \in \mathbb{Q}^{(n-1)} \},\$$

where $\mathbb{Q}^n = \operatorname{span}\{x^p y^q : 0 \le p, q \le n\}$

No continuity across inter-element boundaries

The Discontinuous Galerkin Space Discretisation Reordering Numerical Results

イロト イポト イヨト イヨト

Variational Formulation

For all elements *K*, and for all $\varphi \in C_{\infty}(K)$:

$\mathbf{v} \cdot \nabla T = 1$

The Discontinuous Galerkin Space Discretisation Reordering Numerical Results

イロト イポト イヨト イヨト

- 20

Variational Formulation

For all elements *K*, and for all $\varphi \in C_{\infty}(K)$:

$$\mathbf{v} \cdot \nabla T \varphi = \mathbf{1} \varphi$$

The Discontinuous Galerkin Space Discretisation Reordering Numerical Results

イロト イポト イヨト イヨト

2

Variational Formulation

For all elements *K*, and for all $\varphi \in C_{\infty}(K)$:

$$\int_{K} \mathbf{v} \cdot \nabla T \varphi \, d\mathbf{x} d\mathbf{y} = \int_{K} \varphi \, d\mathbf{x} d\mathbf{y}$$

The Discontinuous Galerkin Space Discretisation Reordering Numerical Results

イロト イポト イヨト イヨト

= 900

Variational Formulation

For all elements *K*, and for all $\varphi \in C_{\infty}(K)$:

$$\int_{\partial K} T \varphi \mathbf{v} \cdot \mathbf{n}_{K} d\mathbf{s} - \int_{K} T \mathbf{v} \cdot \nabla \varphi d\mathbf{x} d\mathbf{y} = \int_{K} \varphi d\mathbf{x} d\mathbf{y}$$

The Discontinuous Galerkin Space Discretisation Reordering Numerical Results

イロト イポト イヨト イヨト

= 900

Variational Formulation

For all elements *K*, and for all $\varphi_h \in V_h$:

$$\int_{\partial K} T_h \varphi_h \mathbf{v} \cdot \mathbf{n}_K d\mathbf{s} - \int_K T_h \mathbf{v} \cdot \nabla \varphi_h \, d\mathbf{x} d\mathbf{y} = \int_K \varphi_h \, d\mathbf{x} d\mathbf{y}$$

The Discontinuous Galerkin Space Discretisation Reordering Numerical Results

イロト イポト イヨト イヨト

Variational Formulation

For all elements *K*, and for all $\varphi_h \in V_h$:

$$\int_{\partial K} \hat{f}(T_h, T_h^{ext}, \mathbf{v} \cdot \mathbf{n}_K) \varphi_h ds - \int_K T_h \mathbf{v} \cdot \nabla \varphi_h \, dx dy = \int_K \varphi_h \, dx dy$$

The Discontinuous Galerkin Space Discretisation Reordering Numerical Results

Numerical Flux Function

 The numerical flux function depends only on the values of *T_h* at the discontinuities

э

3

The numerical flux function:

$$\hat{f}(T_h, T_h^{ext}, \mathbf{v} \cdot \mathbf{n}_K) = T_h \max(\mathbf{v} \cdot \mathbf{n}_K, 0) + T_h^{ext} \min(\mathbf{v} \cdot \mathbf{n}_K, 0)$$

The Discontinuous Galerkin Space Discretisation Reordering Numerical Results

イロト 不得 とくほ とくほとう

Ξ 9 Q (P

Solution Procedure

$$\int_{\partial K} \hat{f}(T_h, T_h^{ext}, \mathbf{v} \cdot \mathbf{n}_K) \varphi_h d\mathbf{s} - \int_K T_h \mathbf{v} \cdot \nabla \varphi_h d\mathbf{x} d\mathbf{y} = \int_K \varphi_h d\mathbf{x} d\mathbf{y}$$

$$\downarrow$$

$$F_K(T) - R_K T_K = B_K$$

The Discontinuous Galerkin Space Discretisation Reordering Numerical Results

Image: A matrix

< ∃⇒

Solution Procedure

• The upwind flux can be written

$$F_{\mathcal{K}}(T) = F_{\mathcal{K}}^+ T_{\mathcal{K}} + F_{\mathcal{K}}^- T_{\Omega \setminus \mathcal{K}},$$

where F_{K}^{+} approximates the flux out of each element and F_{K}^{-} the flux entering from neighbour elements

The system may then be written as

$$F_{K}^{+}T_{K}$$
 – $R_{K}T_{K}$ = B_{K} – $F_{K}^{-}T_{\Omega\setminus K}$

The Discontinuous Galerkin Space Discretisation Reordering Numerical Results

イロト イポト イヨト イヨト

- An elementwise solution is possible by exploiting the causality of the equation
- This sequence can be computed before solving the resulting system (using a depth-first search)
- Reduction in runtime:

 $Nm \times Nm$ system $\longrightarrow N$ systems of size $m \times m$

The Discontinuous Galerkin Space Discretisation Reordering Numerical Results

★ Ξ → < Ξ → </p>

-20

Elementwise solution

A few grid cells and streamlines...

The Discontinuous Galerkin Space Discretisation Reordering Numerical Results

Elementwise solution

A few grid cells and streamlines...

and the corresponding fluxes and a possible sequence of operations

The Discontinuous Galerkin Space Discretisation Reordering Numerical Results

イロン 不得 とくほ とくほ とうほ

L_2 -errors and convergence rates

Ex: Linear rotation, $\mathbf{v} = (y, -x)$:

Table: L_2 -errors and the convergence rates in a smooth domain.

Ν	1. order		2. order		3. order		4. order	
10	3.36e-03		3.13e-05		1.74e-07		2.77e-09	
20	1.52e-03	1.15	7.42e-06	2.08	2.24e-08	2.96	1.45e-10	4.25
40	8.01e-04	0.92	1.95e-06	1.93	2.90e-09	2.95	9.58e-12	3.92
80	4.14e-04	0.95	5.02e-07	1.96	3.69e-10	2.97	6.22e-13	3.94
160	2.05e-04	1.01	1.25e-07	2.01	4.60e-11	3.01	3.84e-14	4.02
320	1.02e-04	1.01	3.10e-08	2.01	5.73e-12	3.00	2.39e-15	4.01

The Discontinuous Galerkin Space Discretisation Reordering Numerical Results

ъ

2

Top Layer in SPE 10

n = 1

Comparison of DGM with a reference solution

The Discontinuous Galerkin Space Discretisation Reordering Numerical Results

∃) = ⊒

Top Layer in SPE 10

n = 2

Comparison of DGM with a reference solution

The Discontinuous Galerkin Space Discretisation Reordering Numerical Results

∃) = ⊒

Top Layer in SPE 10

n = 3

Comparison of DGM with a reference solution

The Discontinuous Galerkin Space Discretisation Reordering Numerical Results

∃) = ⊒

Top Layer in SPE 10

n = 4

Comparison of DGM with a reference solution

The Discontinuous Galerkin Space Discretisation Reordering Numerical Results

Flow Around Strong Discontinuities

n = 1

TOF using DGM

Reference solution

イロン 不良 とくほう 不良 とうほう

The Discontinuous Galerkin Space Discretisation Reordering Numerical Results

Flow Around Strong Discontinuities

n = 2

TOF using DGM

Reference solution

イロン 不良 とくほう 不良 とうほう

The Discontinuous Galerkin Space Discretisation Reordering Numerical Results

Flow Around Strong Discontinuities

n = 3

TOF using DGM

Reference solution

・ロト ・ 同ト ・ ヨト ・ ヨト

Multiphase Flow Summary

Tracer Flow

Stationary Distribution of Tracers Numerical results

・ロト ・ 同ト ・ ヨト ・ ヨト

∃ \$\$\$<</p>

Linear transport equation:

$$\partial_t \boldsymbol{c} + \nabla \cdot (\mathbf{v} \boldsymbol{c}) = \mathbf{0}$$

> Multiphase Flow Summary

Tracer Flow

Stationary Distribution of Tracers Numerical results

・ロト ・ 同ト ・ ヨト ・ ヨト

∃ \$\$\$<</p>

Stationary distribution of tracers:

$$abla \cdot (\mathbf{v}c) = 0$$

> Multiphase Flow Summary

Tracer Flow

Stationary Distribution of Tracers Numerical results

・ロト ・ 同ト ・ ヨト ・ ヨト

∃ \$\$\$<</p>

Stationary distribution of tracers:

$$c
abla \cdot \mathbf{v} + \mathbf{v} \cdot
abla c = 0$$

> Multiphase Flow Summary

Tracer Flow

Stationary Distribution of Tracers Numerical results

・ロト ・ 同ト ・ ヨト ・ ヨト

∃ \$\$\$<</p>

Stationary distribution of tracers:

$$\mathbf{v} \cdot \nabla \mathbf{c} = \mathbf{0}$$

> Multiphase Flow Summary

Stationary Distribution of Tracers Numerical results

Stationary distribution of tracers:

$$\mathbf{v} \cdot \nabla c = 0$$

Time-of-flight equation: $\mathbf{v} \cdot \nabla T = \mathbf{1}$

イロト 不得 とくほと くほとう

Multiphase Flow Summary

Stationary Distribution of Tracers Numerical results

イロト イポト イヨト イヨト

2

Stationary distribution of tracers: $\mathbf{v} \cdot \nabla c = 0$

The linear equations for element K are

$$F_{K}^{+}C_{i,K} - R_{K}C_{i,K} = -F_{K}^{-}C_{i,\Omega\setminus K}, \quad i = 1, ..., n$$

Tracer Flow Multiphase Flow

Summary

Stationary Distribution of Tracers Numerical results

Top layer in SPE 10

Comparison of the approximate tracer distribution using 1. and 5. order DGM

Multiphase Flow

Summary

Stationary Distribution of Tracers Numerical results

Top layer in SPE 10

Order 1 - Piecewise constant polynomials

イロト 不同 トイヨト イヨト 二星 二

Tracer Flow

Iultiphase Flow/ Summary Stationary Distribution of Tracers Numerical results

★ E → ★ E →

3

3D: 15 layers of SPE 10

Implicit DG Solution Numerical Results

Implicit DG Solution

Consider flow of two or more phases

$$S_t + \nabla \cdot (\mathbf{v}F(S)) = 0$$

where F has positive characteristics

Using product rule and semi-discretization

$$S^{n+1} + \Delta t \, \mathbf{v} \cdot \nabla F(S^{n+1}) = S^n - \Delta t \, F(S^n) \nabla \cdot \mathbf{v}$$

- Discretization by DGM
- Reordering as for v · ∇T = 1 → elementwise solution of N nonlinear m × m systems
- For large models: reordered dG + domain decomposition

Summarv

Implicit DG Solution Numerical Results

WAG Injection (3-Phase Flow)

Water (t = 0.075)

Gas (t = 0.075)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

2

2nd order dG method with minmod postprocessing

Summarv

Implicit DG Solution Numerical Results

WAG Injection (3-Phase Flow)

Water (t = 0.125)

Gas (t = 0.125)

・ロト ・ 同ト ・ ヨト ・ ヨト

2nd order dG method with minmod postprocessing

Summarv

Implicit DG Solution Numerical Results

WAG Injection (3-Phase Flow)

Water (t = 0.175)

Gas (t = 0.175)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

2nd order dG method with minmod postprocessing

Summary

Summary

Summary

- Higher-order discontinuous Galerkin methods are implemented
- Fast elementwise solution strategy
- Runtime of the methods are $\mathcal{O}(N)$ for N unknowns
- Effective approximation of stationary tracer distribution
- Promising results for multiphase flow

< 🗇 🕨

→ Ξ → < Ξ →</p>